Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Leveraging population admixture to characterize the heritability of complex traits

Abstract

Despite recent progress on estimating the heritability explained by genotyped SNPs (h2g), a large gap between h2g and estimates of total narrow-sense heritability (h2) remains. Explanations for this gap include rare variants or upward bias in family-based estimates of h2 due to shared environment or epistasis. We estimate h2 from unrelated individuals in admixed populations by first estimating the heritability explained by local ancestry (h2γ). We show that h2γ = 2FSTCθ(1 − θ)h2, where FSTC measures frequency differences between populations at causal loci and θ is the genome-wide ancestry proportion. Our approach is not susceptible to biases caused by epistasis or shared environment. We applied this approach to the analysis of 13 phenotypes in 21,497 African-American individuals from 3 cohorts. For height and body mass index (BMI), we obtained h2 estimates of 0.55 ± 0.09 and 0.23 ± 0.06, respectively, which are larger than estimates of h2g in these and other data but smaller than family-based estimates of h2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relationships between genetic distance and phenotype for a trait with heritability of 80%.
Figure 2: Estimated heritability of height for each chromosome in the CARe data set.

Similar content being viewed by others

References

  1. Wray, N.R. et al. Pitfalls of predicting complex traits from SNPs. Nat. Rev. Genet. 14, 507–515 (2013).

    Article  CAS  Google Scholar 

  2. Eichler, E.E. et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat. Rev. Genet. 11, 446–450 (2010).

    Article  CAS  Google Scholar 

  3. Zaitlen, N. & Kraft, P. Heritability in the genome-wide association era. Hum. Genet. 131, 1655–1664 (2012).

    Article  Google Scholar 

  4. Manolio, T.A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).

    Article  CAS  Google Scholar 

  5. Visscher, P.M., Brown, M.A., McCarthy, M.I. & Yang, J. Five years of GWAS discovery. Am. J. Hum. Genet. 90, 7–24 (2012).

    Article  CAS  Google Scholar 

  6. Chatterjee, N. et al. Projecting the performance of risk prediction based on polygenic analyses of genome-wide association studies. Nat. Genet. 45, 400–405 (2013).

    Article  CAS  Google Scholar 

  7. Visscher, P.M., Hill, W.G. & Wray, N.R. Heritability in the genomics era—concepts and misconceptions. Nat. Rev. Genet. 9, 255–266 (2008).

    Article  CAS  Google Scholar 

  8. Hindorff, L.A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. USA 106, 9362–9367 (2009).

    Article  CAS  Google Scholar 

  9. Gibson, G. Rare and common variants: twenty arguments. Nat. Rev. Genet. 13, 135–145 (2011).

    Google Scholar 

  10. Yang, J. et al. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 42, 565–569 (2010).

    Article  CAS  Google Scholar 

  11. Zaitlen, N. et al. Using extended genealogy to estimate components of heritability for 23 quantitative and dichotomous traits. PLoS Genet. 9, e1003520 (2013).

    Article  CAS  Google Scholar 

  12. Zuk, O., Hechter, E., Sunyaev, S.R. & Lander, E.S. The mystery of missing heritability: genetic interactions create phantom heritability. Proc. Natl. Acad. Sci. USA 109, 1193–1198 (2012).

    Article  CAS  Google Scholar 

  13. Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits (Sinauer, Sunderland, Massachusetts, 1998).

  14. Alexander, D.H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

    Article  CAS  Google Scholar 

  15. Bhatia, G. et al. Genome-wide comparison of African-ancestry populations from CARe and other cohorts reveals signals of natural selection. Am. J. Hum. Genet. 89, 368–381 (2011).

    Article  CAS  Google Scholar 

  16. Sham, P.C. & Purcell, S. Equivalence between Haseman-Elston and variance-components linkage analyses for sib pairs. Am. J. Hum. Genet. 68, 1527–1532 (2001).

    Article  CAS  Google Scholar 

  17. Yang, J., Lee, S.H., Goddard, M.E. & Visscher, P.M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    Article  CAS  Google Scholar 

  18. Lee, S.H., Wray, N.R., Goddard, M.E. & Visscher, P.M. Estimating missing heritability for disease from genome-wide association studies. Am. J. Hum. Genet. 88, 294–305 (2011).

    Article  Google Scholar 

  19. Yang, J., Zaitlen, N.A., Goddard, M.E., Visscher, P.M. & Price, A.L. Advantages and pitfalls in the application of mixed-model association methods. Nat. Genet. 46, 100–106 (2014).

    Article  Google Scholar 

  20. Golan, D. & Rosset, S. Narrowing the gap on heritability of common disease by direct estimation in case-control GWAS. http://arxiv.org/abs/1305.5363 (2013).

  21. Pasaniuc, B. et al. Analysis of Latino populations from GALA and MEC studies reveals genomic loci with biased local ancestry estimation. Bioinformatics 29, 1407–1415 (2013).

    Article  CAS  Google Scholar 

  22. Price, A.L. et al. Sensitive detection of chromosomal segments of distinct ancestry in admixed populations. PLoS Genet. 5, e1000519 (2009).

    Article  Google Scholar 

  23. Johnson, N.A. et al. Ancestral components of admixed genomes in a Mexican cohort. PLoS Genet. 7, e1002410 (2011).

    Article  CAS  Google Scholar 

  24. Maples, B.K., Gravel, S., Kenny, E.E. & Bustamante, C.D. RFMix: a discriminative modeling approach for rapid and robust local-ancestry inference. Am. J. Hum. Genet. 93, 278–288 (2013).

    Article  CAS  Google Scholar 

  25. Simons, Y.B., Turchin, M.C., Pritchard, J.K. & Sella, G. The deleterious mutation load is insensitive to recent population history. Nat. Genet. 46, 220–224 (2014).

    Article  CAS  Google Scholar 

  26. Morrison, A.C. et al. Whole-genome sequence-based analysis of high-density lipoprotein cholesterol. Nat. Genet. 45, 899–901 (2013).

    Article  CAS  Google Scholar 

  27. Hamblin, M.T. & Di Rienzo, A. Detection of the signature of natural selection in humans: evidence from the Duffy blood group locus. Am. J. Hum. Genet. 66, 1669–1679 (2000).

    Article  CAS  Google Scholar 

  28. Reich, D. et al. Reduced neutrophil count in people of African descent is due to a regulatory variant in the Duffy antigen receptor for chemokines gene. PLoS Genet. 5, e1000360 (2009).

    Article  Google Scholar 

  29. Hernandez, R.D. et al. Classic selective sweeps were rare in recent human evolution. Science 331, 920–924 (2011).

    Article  CAS  Google Scholar 

  30. Freedman, M.L. et al. Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men. Proc. Natl. Acad. Sci. USA 103, 14068–14073 (2006).

    Article  CAS  Google Scholar 

  31. Yang, J. et al. Genome partitioning of genetic variation for complex traits using common SNPs. Nat. Genet. 43, 519–525 (2011).

    Article  CAS  Google Scholar 

  32. Lee, S.H. et al. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat. Genet. 45, 984–994 (2013).

    Article  CAS  Google Scholar 

  33. Lee, S.H. et al. Estimating the proportion of variation in susceptibility to schizophrenia captured by common SNPs. Nat. Genet. 44, 247–250 (2012).

    Article  CAS  Google Scholar 

  34. Visscher, P.M. et al. Genome partitioning of genetic variation for height from 11,214 sibling pairs. Am. J. Hum. Genet. 81, 1104–1110 (2007).

    Article  CAS  Google Scholar 

  35. Hemani, G. et al. Inference of the genetic architecture underlying BMI and height with the use of 20,240 sibling pairs. Am. J. Hum. Genet. 93, 865–875 (2013).

    Article  CAS  Google Scholar 

  36. Price, A.L. et al. A genomewide admixture map for Latino populations. Am. J. Hum. Genet. 80, 1024–1036 (2007).

    Article  CAS  Google Scholar 

  37. Nalls, M.A. et al. Admixture mapping of white cell count: genetic locus responsible for lower white blood cell count in the Health ABC and Jackson Heart studies. Am. J. Hum. Genet. 82, 81–87 (2008).

    Article  CAS  Google Scholar 

  38. Vattikuti, S., Guo, J. & Chow, C.C. Heritability and genetic correlations explained by common SNPs for metabolic syndrome traits. PLoS Genet. 8, e1002637 (2012).

    Article  CAS  Google Scholar 

  39. Wilson, J.G. et al. Study design for genetic analysis in the Jackson Heart Study. Ethn. Dis. 15, S6-30–S6-37 (2005).

  40. Reiner, A.P. et al. Genome-wide association study of white blood cell count in 16,388 African Americans: the continental origins and genetic epidemiology network (COGENT). PLoS Genet. 7, e1002108 (2011).

    Article  CAS  Google Scholar 

  41. Freedman, B.I. et al. Genome-wide scans for heritability of fasting serum insulin and glucose concentrations in hypertensive families. Diabetologia 48, 661–668 (2005).

    Article  CAS  Google Scholar 

  42. Akylbekova, E.L. et al. Clinical correlates and heritability of QT interval duration in blacks: the Jackson Heart Study. Circ Arrhythm Electrophysiol 2, 427–432 (2009).

    Article  Google Scholar 

  43. Fox, E.R. et al. Epidemiology, heritability, and genetic linkage of C-reactive protein in African Americans (from the Jackson Heart Study). Am. J. Cardiol. 102, 835–841 (2008).

    Article  CAS  Google Scholar 

  44. Hjelmborg, J.B. et al. The heritability of prostate cancer in the Nordic Twin Study of Cancer. Cancer Epidemiol. Biomarkers Prev. 10.1158/1055-9965.EPI-13-0568 (8 May 2014).

  45. Patterson, N., Price, A.L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).

    Article  Google Scholar 

  46. Pennisi, E. Genomics. 1000 Genomes Project gives new map of genetic diversity. Science 330, 574–575 (2010).

    Article  CAS  Google Scholar 

  47. Bhatia, G., Patterson, N., Sankararaman, S. & Price, A.L. Estimating and interpreting FST: the impact of rare variants. Genome Res. 23, 1514–1521 (2013).

    Article  CAS  Google Scholar 

  48. Speed, D., Hemani, G., Johnson, M.R. & Balding, D.J. Improved heritability estimation from genome-wide SNPs. Am. J. Hum. Genet. 91, 1011–1021 (2012).

    Article  CAS  Google Scholar 

  49. Abecasis, G.R. et al. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012).

    Article  Google Scholar 

  50. Lettre, G. et al. Genome-wide association study of coronary heart disease and its risk factors in 8,090 African Americans: the NHLBI CARe Project. PLoS Genet. 7, e1001300 (2011).

    Article  CAS  Google Scholar 

  51. Pasaniuc, B. et al. Enhanced statistical tests for GWAS in admixed populations: assessment using African Americans from CARe and a Breast Cancer Consortium. PLoS Genet. 7, e1001371 (2011).

    Article  CAS  Google Scholar 

  52. Franceschini, N. et al. Genome-wide association analysis of blood-pressure traits in African-ancestry individuals reveals common associated genes in African and non-African populations. Am. J. Hum. Genet. 93, 545–554 (2013).

    Article  CAS  Google Scholar 

  53. Kolonel, L.N. et al. A multiethnic cohort in Hawaii and Los Angeles: baseline characteristics. Am. J. Epidemiol. 151, 346–357 (2000).

    Article  CAS  Google Scholar 

  54. Haiman, C.A. et al. Characterizing genetic risk at known prostate cancer susceptibility loci in African Americans. PLoS Genet. 7, e1001387 (2011).

    Article  CAS  Google Scholar 

  55. Olama, A.A. et al. A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. Nat. Genet. 46, 1101–1109 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by US National Institutes of Health grants R01 HG006399, R01 GM073059, 1K25HL121295-01A1 and R21 ES020754. The WHI program is funded by the National Heart, Lung, and Blood Institute, US National Institutes of Health, US Department of Health and Human Services through contracts HHSN268201100046C, HHSN268201100001C, HHSN268201100002C, HHSN268201100003C, HHSN268201100004C and HHSN271201100004C.

Author information

Authors and Affiliations

Authors

Contributions

N.Z., B.P., S.S., G.B., A.G., B.J.V., C.H., J.G.W., C.K., D.S., A.P.R., H.T. and A.L.P. designed experiments. N.Z., J.Z., T.Y., A.T., S.P., H.T. and A.L.P. performed experiments. N.Z., S.S., C.H., J.G.W., C.K., D.S., A.P.R., H.T. and A.L.P. wrote the text. T.L.A., S.I.B., W.J.B., S.C., N.F., P.J.G., J.H., A.J.M.H., A.H., S.A.I., W.I., R.A.K., E.A.K., L.A.L., B.N., N.P., D.R., B.A.R., J.L.S., V.L.S., S.S.S., E.A.W., J.S.W. and J.X. provided data.

Corresponding authors

Correspondence to Noah Zaitlen, Hua Tang or Alkes L Price.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–4. (PDF 551 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaitlen, N., Pasaniuc, B., Sankararaman, S. et al. Leveraging population admixture to characterize the heritability of complex traits. Nat Genet 46, 1356–1362 (2014). https://doi.org/10.1038/ng.3139

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3139

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research