Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High-density genotyping study identifies four new susceptibility loci for atopic dermatitis

Abstract

Atopic dermatitis is a common inflammatory skin disease with a strong heritable component. Pathogenetic models consider keratinocyte differentiation defects and immune alterations as scaffolds1, and recent data indicate a role for autoreactivity in at least a subgroup of patients2. FLG (encoding filaggrin) has been identified as a major locus causing skin barrier deficiency3. To better define risk variants and identify additional susceptibility loci, we densely genotyped 2,425 German individuals with atopic dermatitis (cases) and 5,449 controls using the Immunochip array followed by replication in 7,196 cases and 15,480 controls from Germany, Ireland, Japan and China. We identified four new susceptibility loci for atopic dermatitis and replicated previous associations. This brings the number of atopic dermatitis risk loci reported in individuals of European ancestry to 11. We estimate that these susceptibility loci together account for 14.4% of the heritability for atopic dermatitis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Manhattan plot of the Immunochip association statistics highlighting atopic dermatitis susceptibility loci.

Similar content being viewed by others

References

  1. Bieber, T. Atopic dermatitis. N. Engl. J. Med. 358, 1483–1494 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Tang, T.S., Bieber, T. & Williams, H.C. Does “autoreactivity” play a role in atopic dermatitis? J. Allergy Clin. Immunol. 129, 1209–1215.e2 (2012).

    Article  PubMed  Google Scholar 

  3. Palmer, C.N. et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat. Genet. 38, 441–446 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Zhernakova, A., van Diemen, C.C. & Wijmenga, C. Detecting shared pathogenesis from the shared genetics of immune-related diseases. Nat. Rev. Genet. 10, 43–55 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Esparza-Gordillo, J. et al. A common variant on chromosome 11q13 is associated with atopic dermatitis. Nat. Genet. 41, 596–601 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Paternoster, L. et al. Meta-analysis of genome-wide association studies identifies three new risk loci for atopic dermatitis. Nat. Genet. 44, 187–192 (2012).

    Article  CAS  Google Scholar 

  7. Marenholz, I. et al. The eczema risk variant on chromosome 11q13 (rs7927894) in the population-based ALSPAC cohort: a novel susceptibility factor for asthma and hay fever. Hum. Mol. Genet. 20, 2443–2449 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Barrett, J.C. et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat. Genet. 40, 955–962 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Moffatt, M.F. et al. A large-scale, consortium-based genomewide association study of asthma. N. Engl. J. Med. 363, 1211–1221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, Y. et al. The 5q31 variants associated with psoriasis and Crohn's disease are distinct. Hum. Mol. Genet. 17, 2978–2985 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sun, L.D. et al. Genome-wide association study identifies two new susceptibility loci for atopic dermatitis in the Chinese Han population. Nat. Genet. 43, 690–694 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Hirota, T. et al. Genome-wide association study identifies eight new susceptibility loci for atopic dermatitis in the Japanese population. Nat. Genet. 44, 1222–1226 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Trynka, G. et al. Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nat. Genet. 43, 1193–1201 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. de Cid, R. et al. Deletion of the late cornified envelope LCE3B and LCE3C genes as a susceptibility factor for psoriasis. Nat. Genet. 41, 211–215 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. de Koning, H.D. et al. Expression profile of cornified envelope structural proteins and keratinocyte differentiation-regulating proteins during skin barrier repair. Br. J. Dermatol. 166, 1245–1254 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Hsu, T.L. et al. Modulation of dendritic cell differentiation and maturation by decoy receptor 3. J. Immunol. 168, 4846–4853 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Kugathasan, S. et al. Loci on 20q13 and 21q22 are associated with pediatric-onset inflammatory bowel disease. Nat. Genet. 40, 1211–1215 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bamias, G. et al. Upregulation and nuclear localization of TNF-like cytokine 1A (TL1A) and its receptors DR3 and DcR3 in psoriatic skin lesions. Exp. Dermatol. 20, 725–731 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Todd, J.A. et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat. Genet. 39, 857–864 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hakonarson, H. et al. A genome-wide association study identifies KIAA0350 as a type 1 diabetes gene. Nature 448, 591–594 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Australia and New Zealand Multiple Sclerosis Genetics Consortium (ANZgene). Genome-wide association study identifies new multiple sclerosis susceptibility loci on chromosomes 12 and 20. Nat. Genet. 41, 824–828 (2009).

  22. Jagielska, D. et al. Follow-up study of the first genome-wide association scan in alopecia areata: IL13 and KIAA0350 as susceptibility loci supported with genome-wide significance. J. Invest. Dermatol. 132, 2192–2197 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Gan, X. et al. PRR5L degradation promotes mTORC2-mediated PKC-δ phosphorylation and cell migration downstream of Gα(12). Nat. Cell Biol. 14, 686–696 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Palmer, G. & Gabay, C. Interleukin-33 biology with potential insights into human diseases. Nat. Rev. Rheumatol. 7, 321–329 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Gudbjartsson, D.F. et al. Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction. Nat. Genet. 41, 342–347 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Savenije, O.E. et al. Interleukin-1 receptor-like 1 polymorphisms are associated with serum IL1RL1-a, eosinophils, and asthma in childhood. J. Allergy Clin. Immunol. 127, 750–756.e1–5 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Franke, A. et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat. Genet. 42, 1118–1125 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hunt, K.A. et al. Newly identified genetic risk variants for celiac disease related to the immune response. Nat. Genet. 40, 395–402 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Torgerson, D.G. et al. Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations. Nat. Genet. 43, 887–892 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kumar, R. et al. Genome-wide mapping of ZNF652 promoter binding sites in breast cancer cells. J. Cell Biochem. 112, 2742–2747 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Boyman, O. & Sprent, J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat. Rev. Immunol. 12, 180–190 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Zeilinger, S. et al. The effect of BDNF gene variants on asthma in German children. Allergy 64, 1790–1794 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Gudjonsson, J.E. et al. Global gene expression analysis reveals evidence for decreased lipid biosynthesis and increased innate immunity in uninvolved psoriatic skin. J. Invest. Dermatol. 129, 2795–2804 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vladich, F.D. et al. IL-13 R130Q, a common variant associated with allergy and asthma, enhances effector mechanisms essential for human allergic inflammation. J. Clin. Invest. 115, 747–754 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, L. et al. 'Tuning' of type I interferon-induced Jak-STAT1 signaling by calcium-dependent kinases in macrophages. Nat. Immunol. 9, 186–193 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Williams, H.C. et al. The U.K. Working Party's Diagnostic Criteria for Atopic Dermatitis. I. Derivation of a minimum set of discriminators for atopic dermatitis. Br. J. Dermatol. 131, 383–396 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Krawczak, M. et al. PopGen: population-based recruitment of patients and controls for the analysis of complex genotype-phenotype relationships. Community Genet. 9, 55–61 (2006).

    PubMed  Google Scholar 

  38. Wichmann, H.E., Gieger, C. & Illig, T. KORA-gen—resource for population genetics, controls and a broad spectrum of disease phenotypes. Gesundheitswesen 67, S26–S30 (2005).

    Article  PubMed  Google Scholar 

  39. Schmermund, A. et al. Assessment of clinically silent atherosclerotic disease and established and novel risk factors for predicting myocardial infarction and cardiac death in healthy middle-aged subjects: rationale and design of the Heinz Nixdorf RECALL Study. Risk factors, evaluation of coronary calcium and lifestyle. Am. Heart J. 144, 212–218 (2002).

    Article  PubMed  Google Scholar 

  40. Haenle, M.M. et al. Overweight, physical activity, tobacco and alcohol consumption in a cross-sectional random sample of German adults. BMC Public Health 6, 233 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Shimizu, M. et al. Functional SNPs in the distal promoter of the ST2 gene are associated with atopic dermatitis. Hum. Mol. Genet. 14, 2919–2927 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. R Development Core Team. R: A language and environment for statistical computing. in R Foundation for Statistical Computing, Vienna, Austria (2007).

  45. Hindorff, L.A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. USA 106, 9362–9367 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375, S1–3 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Mehta, D. et al. Impact of common regulatory single-nucleotide variants on gene expression profiles in whole blood. Eur. J. Hum. Genet. 21, 48–54 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all individuals with atopic dermatitis, their families, control individuals and clinicians for their participation. We thank T. Wesse, T. Henke, S.S. Sabet, S. Greve, I. Urbach, G. Patone, C. Flachmeier, S. Kolberg and G. Born for expert technical help. This study was supported by the Deutsche Forschungsgemeinschaft (DFG) grant FR 2821/2-1, the German Ministry of Education and Research (BMBF) through the National Genome Research Network (NGFN; 01GS 0818 and 01GS 0812 to Y.-A.L.) and the PopGen biobank. S.W. is supported by a Heisenberg fellowship of the DFG (WE 2678/7-1). The project received infrastructure support through the DFG Clusters of Excellence 'Inflammation at Interfaces'. A.D.I. is supported by the National Children's Research Centre, Dublin. A.D.I. and I.M. are supported by the Wellcome Trust (reference 090066/B/09/Z and 092530/Z/10/Z).

S. Brand is supported by DFG grant BR1912/6-1 and the Else-Kröner-Fresenius-Stiftung (stipend 2010_EKES.32). We acknowledge US National Institutes of Health grant 1R01CA141743-01 (R.H.D., principal investigator) and the University of Pittsburgh Genomics and Proteomics Core Laboratories for the Immunochip genotyping services. This work was supported by Wellcome Trust Programme and Bioresources grants (090066/B/09/Z and 092530/Z/10/Z) to W.H.I.M. and A.D.I. and a Wellcome Trust Strategic Award (098439/Z/12/Z) to W.H.I.M. Parts of this study were funded by the General Program of National Natural Science Foundation of China (31171224), the Program for New Century Excellent Talents in University (NCET-11-0889), the Science and Technological Foundation of Anhui Province for Outstanding Youth (1108085J10) and a pre-project of State Key Basic Research Program 973 of China (2012CB722404).

Author information

Authors and Affiliations

Authors

Contributions

S.W., A.F., Y.-A.L. and D.E. designed the experiments. E.R., J.E.-G., A.M., I.M., N.H., H.S., U.M.-H., M.H., M. Kubo, W.H.I.M. and N.N. performed wet lab experiments. D.E., H.B. and S.M. analyzed the data. S.W., Y.-A.L., N.N., L.M., R.F.-H. and T.W. provided German case samples. H.S. helped providing case samples. M.T., A.T., Y.N., T.H. and M. Kubo provided Japanese replication data. A.D.I., S. Brown, M.A.M. and C.M.F. provided Irish replication data. L.S., X. Zuo, S.Y. and X. Zhang provided Chinese replication data. B.O.B. provided German control samples from the Echinococcus Multilocularis and Internal Diseases in Leutkirch (EMIL) study. P.H. and M.M.N. provided German control samples. S. Brand, J.G. and C.B. provided German control samples, which were genotyped at the University of Pittsburgh Genomics and Proteomics Core Laboratories (R.H.D., principal investigator). J.W. and T.I. provided German control samples. M. Kabesch provided Immunochip data from the cases with asthma from the Multicenter Asthma Genetics in Childhood (MAGIC) and International Study of Asthma and Allergies in Childhood (ISAAC) studies. H.P., K.H., T.I., C.H., L.C.T., P.S. and J.T.E. contributed and analyzed expression data. S.W., A.F., S.S., N.H. and Y.-A.L. supervised the experiments. D.E., H.B., S.W. and A.F. wrote the paper. All authors reviewed, edited and approved the final manuscript.

Corresponding author

Correspondence to Andre Franke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–3, 5, 6 and 9–11 and Supplementary Figures 1–8 (PDF 2156 kb)

Supplementary Table 4

Results of association analysis from Immunochip (panel A of Supplementary Table 1) and replication (panel B-D of Supplementary Table 1) data. (XLSX 20 kb)

Supplementary Table 7

Results of top SNPs for the endophenotypes 'AD and asthma' and 'AD no asthma' and comparison with results from an independent asthma immunochip experiment as well as or other related phenotypes. (XLSX 14 kb)

Supplementary Table 8

Details on 1000 Genomes coding SNPs (cSNPs) that are highly correlated with the SNPs listed in Table 1. (XLSX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellinghaus, D., Baurecht, H., Esparza-Gordillo, J. et al. High-density genotyping study identifies four new susceptibility loci for atopic dermatitis. Nat Genet 45, 808–812 (2013). https://doi.org/10.1038/ng.2642

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2642

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing