Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Surgery Insight: surgical management of epilepsy

Abstract

Epilepsy surgery has been shown to be an effective treatment for patients with intractable epilepsy. The only randomized controlled trial conducted in this setting to date found a dramatic advantage for surgery over medical treatment in temporal lobe epilepsy. In carefully selected patients, epilepsy surgery can control seizures, improve quality of life and reduce costs of medical care. Advances in diagnostic techniques are likely to improve patient selection, facilitate localization of epileptic foci and functional areas, and enable better prediction of outcomes.

Key Points

  • Epilepsy surgery has an important role in the management of chronic epilepsy

  • Currently, intractable epilepsy is defined by failure to achieve seizure cessation and intolerance of treatment

  • Major criteria for intractable epilepsy are the failure of seizure control with three anticonvulsant drugs and the presence of hippocampal sclerosis or cortical dysgenesis

  • A randomized trial of temporal lobe surgery versus medical management showed a 58% seizure-free outcome rate for the surgical group, compared with 8% for the medical management group

  • New surgical strategies include electrical cortical stimulation on demand and continuous deep brain thalamic and temporal lobe stimulation

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Surgery for temporal lobe epilepsy.
Figure 2: Localization of an epileptic focus by ictal single-photon emission computed tomography (SPECT).
Figure 3: Epilepsy surgery in Rasmussen's encephalitis.

Similar content being viewed by others

References

  1. Hauser WA and Kurland LT (1975) The epidemiology of epilepsy in Rochester, Minnesota, 1935 through 1967. Epilepsia 16: 1–66

    Article  CAS  Google Scholar 

  2. Kwan P and Brodie MJ (2000) Early identification of refractory epilepsy. N Engl J Med 342: 314–319

    Article  CAS  Google Scholar 

  3. Silfvenius H (1999) Cost–benefit of epilepsy surgery. Acta Neurol Belg 99: 266–274

    CAS  PubMed  Google Scholar 

  4. Cascino GD (1990) Intractable partial epilepsy: evaluation and treatment. Mayo Clin Proc 65: 1578–1586

    Article  CAS  Google Scholar 

  5. Spencer S et al. (2005) Predicting long-term seizure outcome after resective epilepsy surgery. Neurology 65: 912–918

    Article  CAS  Google Scholar 

  6. Vickrey BG et al. (1995) Outcome assessment for epilepsy surgery: the impact of measuring health-related quality of life. Ann Neurol 37: 158–166

    Article  CAS  Google Scholar 

  7. Semah F et al. (1998) Is the underlying cause of epilepsy a major prognostic factor for recurrence? Neurology 51: 1256–1262

    Article  CAS  Google Scholar 

  8. Armon C et al. (1996) Predictors of outcome of epilepsy surgery: multivariate analysis with validation. Epilepsia 37: 814–821

    Article  CAS  Google Scholar 

  9. Holmes MD et al. (2000) Outcome after surgery in patients with refractory temporal lobe epilepsy and normal MRI. Seizure 9: 407–411

    Article  CAS  Google Scholar 

  10. Dlugos DJ (2001) The early identification of candidates for epilepsy surgery. Arch Neurol 58: 1543–1546

    Article  CAS  Google Scholar 

  11. Hennessy MJ et al. (2001) Predictors of outcome and pathological considerations in the surgical treatment of intractable epilepsy associated with temporal lobe lesions. J Neurol Neurosurg Psychiatry 70: 450–458

    Article  CAS  Google Scholar 

  12. Engel JJ (1993) Surgical Treatment of the Epilepsies, edn 2. New York: Raven Press

    Google Scholar 

  13. Andermann F (1997) Brain structure and epilepsy: the impact of modern imaging. AJNR Am J Neuroradiol 18: 302–306

    CAS  PubMed  Google Scholar 

  14. Luders HO (1992) Epilepsy Surgery. New York: Raven Press

    Google Scholar 

  15. Janszky J et al. (2001) Surgically treatable epilepsy—a review [Hungarian]. Orv Hetil 142: 1597–1604

    CAS  PubMed  Google Scholar 

  16. Spencer SS et al. (1990) Combined depth and subdural electrode investigation in uncontrolled epilepsy. Neurology 40: 74–79

    Article  CAS  Google Scholar 

  17. Kuzniecky RI and Knowlton RC (2002) Neuroimaging of epilepsy. Semin Neurol 22: 279–288

    Article  Google Scholar 

  18. Cascino GD (1995) Clinical correlations with hippocampal atrophy. Magn Reson Imaging 13: 1133–1136

    Article  CAS  Google Scholar 

  19. Rodríguez-Barrionuevo AC (1996) Neurocutaneous syndromes with predominant vascular anomalies [Spanish]. Rev Neurol 24: 1072–1084

    PubMed  Google Scholar 

  20. David J et al. (1991) Scleroderma 'en coup de sabre'. Ann Rheum Dis 50: 260–262

    Article  CAS  Google Scholar 

  21. Prayson RA et al. (1999) Linear epidermal nevus and nevus sebaceus syndromes: a clinicopathologic study of 3 patients. Arch Pathol Lab Med 123: 301–305

    CAS  PubMed  Google Scholar 

  22. Campistol J (2002) Congenital errors of metabolism with epileptic seizures during the first years of life [Spanish]. Rev Neurol 35 (Suppl 1): S3–S20

    PubMed  Google Scholar 

  23. Oguni H (2005) Symptomatic epilepsies imitating idiopathic generalized epilepsies. Epilepsia 46 (Suppl 9): S84–S90

    Article  Google Scholar 

  24. Roquer J et al. (1994) Axillary skin biopsy: a reliable diagnostic test for Lafora's disease [Spanish]. Neurologia 9: 431–432

    CAS  PubMed  Google Scholar 

  25. Gates JR et al. (1985) Ictal characteristics of pseudoseizures. Arch Neurol 42: 1183–1187

    Article  CAS  Google Scholar 

  26. Ebersole JS and Pacia SV (1996) Localization of temporal lobe foci by ictal EEG patterns. Epilepsia 37: 386–399

    Article  CAS  Google Scholar 

  27. Spencer SS (1989) Controversies in epileptology: depth vs subdural electrode studies for unlocalized epilepsy. J Epilepsy 2: 123–127

    Article  Google Scholar 

  28. Juhasz C et al. (2001) Neuroradiological assessment of brain structure and function and its implication in the pathogenesis of West syndrome. Brain Dev 23: 488–495

    Article  CAS  Google Scholar 

  29. Kuzniecky R et al. (1987) Magnetic resonance imaging in temporal lobe epilepsy: pathological correlations. Ann Neurol 22: 341–347

    Article  CAS  Google Scholar 

  30. Berkovic SF et al. (1995) Preoperative MRI predicts outcome of temporal lobectomy: an actuarial analysis. Neurology 45: 1358–1363

    Article  CAS  Google Scholar 

  31. Cascino GD et al. (1992) Magnetic resonance imaging in intractable frontal lobe epilepsy: pathologic correlation and prognostic importance. Epilepsy Res 11: 51–59

    Article  CAS  Google Scholar 

  32. Wieshmann U (2003) Clinical application of neuroimaging in epilepsy. J Neurol Neurosurg Psychiatry 74: 466–470

    Article  CAS  Google Scholar 

  33. Chugani DC and Chugani HT (2000) New directions in PET neuroimaging for neocortical epilepsy. Adv Neurol 84: 447–456

    CAS  PubMed  Google Scholar 

  34. Knowlton RC et al. (1997) Presurgical multimodality neuroimaging in electroencephalographic lateralized temporal lobe epilepsy. Ann Neurol 42: 829–837

    Article  CAS  Google Scholar 

  35. Kuzniecky R (1988) Focal cortical dysplasia. J Neurosurg 69: 478

    CAS  PubMed  Google Scholar 

  36. Kuzniecky R et al. (2001) Magnetic resonance spectroscopic imaging in temporal lobe epilepsy: neuronal dysfunction or cell loss? Arch Neurol 58: 2048–2053

    Article  CAS  Google Scholar 

  37. Gaillard WD et al. (2001) Cortical localization of reading in normal children: an fMRI language study. Neurology 57: 47–54

    Article  CAS  Google Scholar 

  38. Richardson MP (2002) Functional imaging in epilepsy. Seizure 11 (Suppl A): S139–S156

    Google Scholar 

  39. Matthews PM et al. (2003) Towards understanding language organisation in the brain using fMRI. Hum Brain Mapp 18: 239–247

    Article  CAS  Google Scholar 

  40. Sabbah P et al. (2003) Functional MR imaging in assessment of language dominance in epileptic patients. Neuroimage 18: 460–467

    Article  CAS  Google Scholar 

  41. O'Brien TJ et al. (1998) Subtraction ictal SPECT co-registered to MRI improves clinical usefulness of SPECT in localizing the surgical seizure focus. Neurology 50: 445–454

    Article  CAS  Google Scholar 

  42. Sutherling WW et al. (2001) Dipole localization of human induced focal afterdischarge seizure in simultaneous magnetoencephalography and electrocorticography. Brain Topogr 14: 101–116

    Article  CAS  Google Scholar 

  43. Iida K et al. (2005) Characterizing magnetic spike sources by using magnetoencephalography-guided neuronavigation in epilepsy surgery in pediatric patients. J Neurosurg 102 (2 Suppl): S187–S196

    Article  Google Scholar 

  44. Knowlton RC et al. (2006) Magnetic source imaging versus intracranial electroencephalogram in epilepsy surgery: a prospective study. Ann Neurol 59: 835–842

    Article  Google Scholar 

  45. Alpherts WC et al. (2000) The wada test: prediction of focus lateralization by asymmetric and symmetric recall. Epilepsy Res 39: 239–249

    Article  CAS  Google Scholar 

  46. Williamson PD et al. (1985) Complex partial seizures of frontal lobe origin. Ann Neurol 18: 497–504

    Article  CAS  Google Scholar 

  47. Penfield W and Jasper H (1954) Epilepsy and the Functional Anatomy of the Human Brain. Boston: Little Brown and Company

    Book  Google Scholar 

  48. French JA et al. (1993) Characteristics of medial temporal lobe epilepsy: I. Results of history and physical examination. Ann Neurol 34: 774–780

    Article  CAS  Google Scholar 

  49. Benifla M et al. (2006) Temporal lobe surgery for intractable epilepsy in children: an analysis of outcomes in 126 children. Neurosurgery 59: 1203–1213

    Article  Google Scholar 

  50. Boon P et al. (1994) Clinical and neurophysiological correlations in patients with refractory partial epilepsy and intracranial structural lesions. Acta Neurochir (Wien) 128: 68–83

    Article  CAS  Google Scholar 

  51. Cappabianca P et al. (1997) Supratentorial cavernous malformations and epilepsy: seizure outcome after lesionectomy on a series of 35 patients. Clin Neurol Neurosurg 99: 179–183

    Article  CAS  Google Scholar 

  52. Pacia SV et al. (1996) Clinical features of neocortical temporal lobe epilepsy. Ann Neurol 40: 724–730

    Article  CAS  Google Scholar 

  53. Luders H (1996) Supplementary sensorimotor area. In Advances in Neurology, vol. 70, 495–499 (Ed. Luders H) Philadelphia: Lippincott-Raven

    Google Scholar 

  54. Roberts DW et al. (2001) Investigation of extra-temporal epilepsy. Stereotact Funct Neurosurg 77: 216–218

    Article  CAS  Google Scholar 

  55. Devlin AM et al. (2003) Clinical outcomes of hemispherectomy for epilepsy in childhood and adolescence. Brain 126: 556–566

    Article  CAS  Google Scholar 

  56. van Empelen R et al. (2004) Functional consequences of hemispherectomy. Brain 127: 2071–2079.

    Article  CAS  Google Scholar 

  57. Reutens DC et al. (1993) Corpus callosotomy for intractable epilepsy: seizure outcome and prognostic factors. Epilepsia 34: 904–909

    Article  CAS  Google Scholar 

  58. Sorenson JM et al. (1997) Corpus callosotomy for medically intractable seizures. Pediatr Neurosurg 27: 260–267

    Article  CAS  Google Scholar 

  59. Kuzniecky R et al. (1997) Intrinsic epileptogenesis of hypothalamic hamartomas in gelastic epilepsy. Ann Neurol 42: 60–67

    Article  CAS  Google Scholar 

  60. Valdueza J et al. (1994) Hypothalamic hamartomas: with special reference to gelastic epilepsy and surgery. Neurosurgery 34: 949–958

    CAS  PubMed  Google Scholar 

  61. Regis J et al. (2000) Gamma knife surgery for epilepsy related to hypothalamic hamartomas. Neurosurgery 47: 1343–1351

    Article  CAS  Google Scholar 

  62. Mulligan LP et al. (2001) Multiple subpial transections: the Yale experience. Epilepsia 42: 226–229

    CAS  PubMed  Google Scholar 

  63. Tecoma ES and Iragui VJ (2006) Vagus nerve stimulation use and effect in epilepsy: what have we learned? Epilepsy Behav 8: 127–136

    Article  Google Scholar 

  64. Lesser RP et al. (1999) Brief bursts of pulse stimulation terminate afterdischarges caused by cortical stimulation. Neurology 53: 2073–2081

    Article  CAS  Google Scholar 

  65. Boon P et al. (2007) Deep brain stimulation in patients with refractory temporal lobe epilepsy. Epilepsia 48: 1551–1560

    Article  Google Scholar 

  66. Velasco AL et al. (2006) Neuromodulation of the centromedian thalamic nuclei in the treatment of generalized seizures and the improvement of the quality of life in patients with Lennox–Gastaut syndrome. Epilepsia 47: 1203–1212

    Article  Google Scholar 

  67. Wiebe S et al. (2001) Effectiveness and efficiency of surgery for temporal lobe epilepsy study group. N Engl J Med 345: 311–318

    Article  CAS  Google Scholar 

  68. Guldvog B et al. (1994) Surgical treatment of partial epilepsy among Norwegian adults. Epilepsia 35: 540–553

    Article  CAS  Google Scholar 

  69. Téllez-Zenteno J et al. (2007) Long-term outcomes in epilepsy surgery: AED, mortality, cognitive and psychosocial aspects. Brain 130: 334–345

    Article  Google Scholar 

  70. Devinsky O and Penry JK (1993) Quality of life in epilepsy: the clinician's view. Epilepsia 34 (Suppl 4): S4–S7

    Article  Google Scholar 

  71. Vickrey BG et al. (1993) Outcomes with respect to quality of life. In Surgical Treatment of the Epilepsies, edn 2 623–635 (Ed. Engel J) New York: Raven Press

    Google Scholar 

  72. Locharernkul C et al. (2005) Quality of life after successful epilepsy surgery: evaluation by occupational achievement and income acquisition. J Med Assoc Thai 88 (Suppl 4): S207–S213

    PubMed  Google Scholar 

  73. Alpherts WC et al. (2006) Verbal memory decline after temporal epilepsy surgery? A 6-year multiple assessments follow-up study. Neurology 22: 626–631

    Article  Google Scholar 

  74. Monté CP et al. (2006) Sudden unexpected death in epilepsy patients: risk factors: a systematic review. Seizure 16: 1–7

    Article  Google Scholar 

  75. Sperling MR et al. (1999) Seizure control and mortality in epilepsy. Ann Neurol 46: 45–50

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors' work is partially supported by the FACES Foundation (Finding A Cure for Epilepsy and Seizures). Charles P Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the Medscape-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben Kuzniecky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuzniecky, R., Devinsky, O. Surgery Insight: surgical management of epilepsy. Nat Rev Neurol 3, 673–681 (2007). https://doi.org/10.1038/ncpneuro0663

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneuro0663

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing