Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Increasing O-GlcNAc slows neurodegeneration and stabilizes tau against aggregation

Abstract

Oligomerization of tau is a key process contributing to the progressive death of neurons in Alzheimer's disease. Tau is modified by O-linked N-acetylglucosamine (O-GlcNAc), and O-GlcNAc can influence tau phosphorylation in certain cases. We therefore speculated that increasing tau O-GlcNAc could be a strategy to hinder pathological tau-induced neurodegeneration. Here we found that treatment of hemizygous JNPL3 tau transgenic mice with an O-GlcNAcase inhibitor increased tau O-GlcNAc, hindered formation of tau aggregates and decreased neuronal cell loss. Notably, increases in tau O-GlcNAc did not alter tau phosphorylation in vivo. Using in vitro biochemical aggregation studies, we found that O-GlcNAc modification, on its own, hinders tau oligomerization. O-GlcNAc also inhibits thermally induced aggregation of an unrelated protein, TAK-1 binding protein, suggesting that a basic biochemical function of O-GlcNAc may be to prevent protein aggregation. These results also suggest O-GlcNAcase as a potential therapeutic target that could hinder progression of Alzheimer's disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Treatment of JNPL3 mice increases global and tau O-GlcNAc and reduces neurodegeneration.
Figure 2: IHC analysis of thiamet-G–treated JNPL3 mice reveals reductions in NFTs.
Figure 3: Biochemical analysis of thiamet-G–treated JNPL3 mice.
Figure 4: O-GlcNAc on Tau244–441 slows aggregation in vitro.

Similar content being viewed by others

References

  1. Bierer, L.M. et al. Neocortical neurofibrillary tangles correlate with dementia severity in Alzheimer's disease. Arch. Neurol. 52, 81–88 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Hutton, M. et al. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393, 702–705 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Goedert, M., Jakes, R. & Crowther, R.A. Effects of frontotemporal dementia FTDP-17 mutations on heparin-induced assembly of tau filaments. FEBS Lett. 450, 306–311 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Vogelsberg-Ragaglia, V. et al. Distinct FTDP-17 missense mutations in tau produce tau aggregates and other pathological phenotypes in transfected CHO cells. Mol. Biol. Cell 11, 4093–4104 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lewis, J. et al. Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat. Genet. 25, 402–405 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Santacruz, K. et al. Tau suppression in a neurodegenerative mouse model improves memory function. Science 309, 476–481 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alonso, A., Zaidi, T., Novak, M., Grundke-Iqbal, I. & Iqbal, K. Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. Proc. Natl. Acad. Sci. USA 98, 6923–6928 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Weaver, C.L., Espinoza, M., Kress, Y. & Davies, P. Conformational change as one of the earliest alterations of tau in Alzheimer's disease. Neurobiol. Aging 21, 719–727 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Gong, C.X., Liu, F., Grundke-Iqbal, I. & Iqbal, K. Post-translational modifications of tau protein in Alzheimer's disease. J. Neural Transm. 112, 813–838 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Marcus, J.N. & Schachter, J. Targeting post-translational modifications on tau as a therapeutic strategy for Alzheimer's disease. J. Neurogenet. 25, 127–133 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Arnold, C.S. et al. The microtubule-associated protein tau is extensively modified with O-linked N-acetylglucosamine. J. Biol. Chem. 271, 28741–28744 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Lefebvre, T. et al. Evidence of a balance between phosphorylation and O-GlcNAc glycosylation of Tau proteins—a role in nuclear localization. Biochim. Biophys. Acta 1619, 167–176 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Liu, F., Iqbal, K., Grundke-Iqbal, I., Hart, G.W. & Gong, C.X. O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer's disease. Proc. Natl. Acad. Sci. USA 101, 10804–10809 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Kreppel, L.K., Blomberg, M.A. & Hart, G.W. Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J. Biol. Chem. 272, 9308–9315 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Lubas, W.A., Frank, D.W., Krause, M. & Hanover, J.A. O-Linked GlcNAc transferase is a conserved nucleocytoplasmic protein containing tetratricopeptide repeats. J. Biol. Chem. 272, 9316–9324 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Marshall, S., Bacote, V. & Traxinger, R.R. Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J. Biol. Chem. 266, 4706–4712 (1991).

    CAS  PubMed  Google Scholar 

  17. Dong, D.L. & Hart, G.W. Purification and characterization of an O-GlcNAc selective N-acetyl-β-D-glucosaminidase from rat spleen cytosol. J. Biol. Chem. 269, 19321–19330 (1994).

    CAS  PubMed  Google Scholar 

  18. Gao, Y., Wells, L., Comer, F.I., Parker, G.J. & Hart, G.W. Dynamic O-glycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic β-N-acetylglucosaminidase from human brain. J. Biol. Chem. 276, 9838–9845 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Roquemore, E.P., Chevrier, M.R., Cotter, R.J. & Hart, G.W. Dynamic O-GlcNAcylation of the small heat shock protein αβ-crystallin. Biochemistry 35, 3578–3586 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Yuzwa, S.A. et al. A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo. Nat. Chem. Biol. 4, 483–490 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Heiss, W.D., Szelies, B., Kessler, J. & Herholz, K. Abnormalities of energy metabolism in Alzheimer's disease studied with PET. Ann. NY Acad. Sci. 640, 65–71 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Drzezga, A. et al. Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer's disease: a PET follow-up study. Eur. J. Nucl. Med. Mol. Imaging 30, 1104–1113 (2003).

    Article  PubMed  Google Scholar 

  23. Mielke, R., Herholz, K., Grond, M., Kessler, J. & Heiss, W.D. Clinical deterioration in probable Alzheimer's disease correlates with progressive metabolic impairment of association areas. Dementia 5, 36–41 (1994).

    CAS  PubMed  Google Scholar 

  24. Shulman, J.M. et al. Functional screening of Alzheimer pathology genome-wide association signals in Drosophila. Am. J. Hum. Genet. 88, 232–238 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu, Y., Liu, F., Grundke-Iqbal, I., Iqbal, K. & Gong, C.X. Brain glucose transporters, O-GlcNAcylation and phosphorylation of tau in diabetes and Alzheimer's disease. J. Neurochem. 111, 242–249 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lefebvre, T. et al. Dysregulation of the nutrient/stress sensor O-GlcNAcylation is involved in the etiology of cardiovascular disorders, type-2 diabetes and Alzheimer's disease. Biochim. Biophys. Acta 1800, 67–79 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Steen, E. et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease—is this type 3 diabetes? J. Alzheimers Dis. 7, 63–80 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Li, X., Lu, F., Wang, J.Z. & Gong, C.X. Concurrent alterations of O-GlcNAcylation and phosphorylation of tau in mouse brains during fasting. Eur. J. Neurosci. 23, 2078–2086 (2006).

    Article  PubMed  Google Scholar 

  29. Liu, F. et al. Reduced O-GlcNAcylation links lower brain glucose metabolism and tau pathology in Alzheimer's disease. Brain 132, 1820–1832 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Schubert, D. Glucose metabolism and Alzheimer's disease. Ageing Res. Rev. 4, 240–257 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Robertson, L.A., Moya, K.L. & Breen, K.C. The potential role of tau protein O-glycosylation in Alzheimer's disease. J. Alzheimers Dis. 6, 489–495 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Wang, Z. et al. Enrichment and site mapping of O-linked N-acetylglucosamine by a combination of chemical/enzymatic tagging, photochemical cleavage, and electron transfer dissociation mass spectrometry. Mol. Cell. Proteomics 9, 153–160 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Yuzwa, S.A. et al. Mapping O-GlcNAc modification sites on tau and generation of a site-specific O-GlcNAc tau antibody. Amino Acids 40, 857–868 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Macauley, M.S., Shan, X., Yuzwa, S.A., Gloster, T.M. & Vocadlo, D.J. Elevation of global O-GlcNAc in rodents using a selective O-GlcNAcase inhibitor does not cause insulin resistance or perturb glucohomeostasis. Chem. Biol. 17, 949–958 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Uno, Y. et al. Efficacy of a novel, orally active GSK-3 inhibitor 6-methyl-N-[3-[[3-(1-methylethoxy)propyl]carbamoyl]-1H-pyrazol-4-yl]pyridine-3-carboxamide in tau transgenic mice. Brain Res. 1296, 148–163 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Le Corre, S. et al. An inhibitor of tau hyperphosphorylation prevents severe motor impairments in tau transgenic mice. Proc. Natl. Acad. Sci. USA 103, 9673–9678 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Sahara, N. et al. Assembly of tau in transgenic animals expressing P301L tau: alteration of phosphorylation and solubility. J. Neurochem. 83, 1498–1508 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Smet-Nocca, C. et al. Identification of O-GlcNAc sites within peptides of the Tau protein and their impact on phosphorylation. Mol. Biosyst. 7, 1420–1429 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Reynolds, M.R. et al. Tau nitration occurs at tyrosine 29 in the fibrillar lesions of Alzheimer's disease and other tauopathies. J. Neurosci. 26, 10636–10645 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. de Calignon, A. et al. Caspase activation precedes and leads to tangles. Nature 464, 1201–1204 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chirita, C.N., Congdon, E.E., Yin, H. & Kuret, J. Triggers of full-length tau aggregation: a role for partially folded intermediates. Biochemistry 44, 5862–5872 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Goedert, M. et al. Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans. Nature 383, 550–553 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Wilson, D.M. & Binder, L.I. Free fatty acids stimulate the polymerization of tau and amyloid beta peptides. In vitro evidence for a common effector of pathogenesis in Alzheimer's disease. Am. J. Pathol. 150, 2181–2195 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Friedhoff, P., Schneider, A., Mandelkow, E.M. & Mandelkow, E. Rapid assembly of Alzheimer-like paired helical filaments from microtubule-associated protein tau monitored by fluorescence in solution. Biochemistry 37, 10223–10230 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Taniguchi, T. et al. Effects of different anti-tau antibodies on tau fibrillogenesis: RTA-1 and RTA-2 counteract tau aggregation. FEBS Lett. 579, 1399–1404 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Clarke, A.J. et al. Structural insights into mechanism and specificity of O-GlcNAc transferase. EMBO J. 27, 2780–2788 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Conner, S.H. et al. TAK1-binding protein 1 is a pseudophosphatase. Biochem. J. 399, 427–434 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hanson, S.R. et al. The core trisaccharide of an N-linked glycoprotein intrinsically accelerates folding and enhances stability. Proc. Natl. Acad. Sci. USA 106, 3131–3136 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Culyba, E.K. et al. Protein native-state stabilization by placing aromatic side chains in N-glycosylated reverse turns. Science 331, 571–575 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pickhardt, M. et al. Anthraquinones inhibit tau aggregation and dissolve Alzheimer's paired helical filaments in vitro and in cells. J. Biol. Chem. 280, 3628–3635 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Scottish Rite Charitable Foundation, the Canadian Institutes of Health Research (CIHR) and the Alzheimer Society of Canada for financial support of this research. The Canada Research Chairs program, the Michael Smith Foundation for Health Research (MSFHR) and the Natural Sciences and Engineering Research Council of Canada (NSERC, E.W.R. Steacie Award) are thanked for awards to D.J.V. NSERC is thanked for an award to S.A.Y. The MSFHR and the CIHR are thanked for awards to X.S. The MSFHR, NSERC and Human Frontier Science Program are thanked for awards to M.S.M. We thank the staff at the animal care facility at Simon Fraser University for assistance with the animal studies. P. Davies (Albert Einstein College of Medicine) is thanked for the kind gift of the CP27 and PHF-1 antibodies used in this work. Y. Deng, R. Kaul and E. McEachern are thanked for assistance with preliminary studies, large-scale synthesis of thiamet-G and productive discussion.

Author information

Authors and Affiliations

Authors

Contributions

D.J.V. directed the study. S.A.Y., X.S., M.S.M. and D.J.V. designed the experiments. X.S. conducted the rotarod assessment and the JNPL3 IHC. S.A.Y. conducted the cage hang test and the JNPL3 tau biochemistry and tau in vitro aggregation experiments. M.S.M. conducted the sTAB1 experiments. Y.S., T.C. and K.V. conducted the tau mass spectrometry. S.A.Y., X.S. and D.J.V. wrote the manuscript.

Corresponding author

Correspondence to David J Vocadlo.

Ethics declarations

Competing interests

S.A.Y., M.S.M., X.S. and D.J.V. are eligible to receive royalties from Simon Fraser University. D.J.V. is a founder, shareholder, consultant and member of the scientific advisory board of Alectos Therapeutics.

Supplementary information

Supplementary Text and Figures

Supplementary Results and Supplementary Methods (PDF 2058 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuzwa, S., Shan, X., Macauley, M. et al. Increasing O-GlcNAc slows neurodegeneration and stabilizes tau against aggregation. Nat Chem Biol 8, 393–399 (2012). https://doi.org/10.1038/nchembio.797

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.797

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing