Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Engineered diubiquitin synthesis reveals Lys29-isopeptide specificity of an OTU deubiquitinase

Abstract

Ubiquitination is a reversible post-translational modification that regulates a myriad of eukaryotic functions. Our ability to study the effects of ubiquitination is often limited by the inaccessibility of homogeneously ubiquitinated proteins. In particular, elucidating the roles of the so-called 'atypical' ubiquitin chains (chains other than Lys48- or Lys63-linked ubiquitin), which account for a large fraction of ubiquitin polymers, is challenging because the enzymes for their biosynthesis are unknown. Here we combine genetic code expansion, intein chemistry and chemoselective ligations to synthesize 'atypical' ubiquitin chains. We solve the crystal structure of Lys6-linked diubiquitin, which is distinct from that of structurally characterized ubiquitin chains, providing a molecular basis for the different biological functions this linkage may regulate. Moreover, we profile a panel containing 10% of the known human deubiquitinases on Lys6- and Lys29-linked ubiquitin and discover that TRABID cleaves the Lys29 linkage 40-fold more efficiently than the Lys63 linkage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis and characterization of Lys6- and Lys29-linked ubiquitin.
Figure 2: Structure of Lys6-linked diubiquitin.
Figure 3: Profiling of deubiquitinase activity toward (UbLys6)2, (UbLys29)2 and (UbLys63)2.
Figure 4: The specificity constant of TRABID is 40-fold higher on (UbLys29)2 than on (UbLys63)2 as determined by quantitative western blot.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Chen, Z.J. & Sun, L.J. Nonproteolytic functions of ubiquitin in cell signaling. Mol. Cell 33, 275–286 (2009).

    Article  CAS  Google Scholar 

  2. Komander, D. The emerging complexity of protein ubiquitination. Biochem. Soc. Trans. 37, 937–953 (2009).

    Article  CAS  Google Scholar 

  3. Ikeda, F. & Dikic, I. Atypical ubiquitin chains: new molecular signals. 'Protein modifications: beyond the usual suspects' review series. EMBO Rep. 9, 536–542 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Peng, J. et al. A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol. 21, 921–926 (2003).

    Article  CAS  Google Scholar 

  5. Xu, P. et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137, 133–145 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  Google Scholar 

  7. Komander, D. et al. Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. EMBO Rep. 10, 466–473 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Dikic, I., Wakatsuki, S. & Walters, K.J. Ubiquitin-binding domains—from structures to functions. Nat. Rev. Mol. Cell Biol. 10, 659–671 (2009).

    Article  CAS  Google Scholar 

  9. Wang, H. et al. Analysis of nondegradative protein ubiquitylation with a monoclonal antibody specific for lysine-63-linked polyubiquitin. Proc. Natl. Acad. Sci. USA 105, 20197–20202 (2008).

    Article  CAS  Google Scholar 

  10. Newton, K. et al. Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies. Cell 134, 668–678 (2008).

    Article  CAS  Google Scholar 

  11. Bremm, A., Freund, S.M.V. & Komander, D. Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolysed by the deubiquitinase Cezanne. Nat. Struct. Mol. Biol. 17, 939–947 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Chatterjee, C., McGinty, R.K., Pellois, J.-P. & Muir, T.W. Auxiliary-mediated site-specific peptide ubiquitylation. Angew. Chem. Int. Edn Engl. 46, 2814–2818 (2007).

    Article  CAS  Google Scholar 

  13. McGinty, R.K., Kim, J., Chatterjee, C., Roeder, R. & Muir, T. Chemically ubiquitylated histone H2B stimulates hDot1L-mediated intranucleosomal methylation. Nature 453, 812–816 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Yang, R., Pasunooti, K., Li, F., Liu, X. & Liu, C. Dual native chemical ligation at lysine. J. Am. Chem. Soc. 131, 13592–13593 (2009).

    Article  CAS  Google Scholar 

  15. Ajish Kumar, K.S., Haj-Yahya, M., Olschewski, D., Lashuel, H.A. & Brik, A. Highly efficient and chemoselective peptide ubiquitylation. Angew. Chem. Int. Edn Engl. 48, 8090–8094 (2009).

    Article  CAS  Google Scholar 

  16. Li, X., Fekner, T., Ottesen, J.J. & Chan, M.K. A pyrrolysine analogue for site-specific protein ubiquitination. Angew. Chem. Int. Edn Engl. 48, 9184–9187 (2009).

    Article  CAS  Google Scholar 

  17. Hodgins, R.R., Ellison, K.S. & Ellison, M.J. Expression of a ubiquitin derivative that conjugates to protein irreversibly produces phenotypes consistent with a ubiquitin deficiency. J. Biol. Chem. 267, 8807–8812 (1992).

    CAS  PubMed  Google Scholar 

  18. Tran, H., Hamada, F., Schwarz-Romond, T. & Bienz, M. Trabid, a new positive regulator of Wnt-induced transcription with preference for binding and cleaving K63-linked ubiquitin chains. Genes Dev. 22, 528–542 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Srinivasan, G., James, C.M. & Krzycki, J.A. Pyrrolysine encoded by UAG in Archaea: charging of a UAG-decoding specialized tRNA. Science 296, 1459–1462 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Ambrogelly, A. et al. Pyrrolysine is not hardwired for cotranslational insertion at UAG codons. Proc. Natl. Acad. Sci. USA 104, 3141–3146 (2007).

    Article  CAS  Google Scholar 

  21. Neumann, H., Peak-Chew, S.Y. & Chin, J.W. Genetically encoding N(epsilon)-acetyllysine in recombinant proteins. Nat. Chem. Biol. 4, 232–234 (2008).

    Article  CAS  Google Scholar 

  22. Polycarpo, C.R. et al. Pyrrolysine analogues as substrates for pyrrolysyl-tRNA synthetase. FEBS Lett. 580, 6695–6700 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Kawakami, T. et al. Polypeptide synthesis using an expressed peptide as a building block for condensation with a peptide thioester: application to the synthesis of phosphorylated p21Max protein(1–101). J. Pept. Sci. 7, 474–487 (2001).

    Article  CAS  Google Scholar 

  24. Aimoto, S. Polypeptide synthesis by the thioester method. Biopolymers 51, 247–265 (1999).

    Article  CAS  Google Scholar 

  25. Tan, Z., Shang, S., Halkina, T., Yuan, Y. & Danishefsky, S.J. Toward homogeneous erythropoietin: non-NCL-based chemical synthesis of the Gln(78)-Arg(166) glycopeptide domain. J. Am. Chem. Soc. 131, 5424–5431 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Tam, J.P., Heath, W.F. & Merrifield, R.B. Mechanisms for the removal of benzyl protecting groups in synthetic peptides by trifluoromethanesulfonic acid trifluoroacetic-acid dimethyl sulfide. J. Am. Chem. Soc. 8, 5242–5251 (1986).

    Article  Google Scholar 

  27. Pickart, C.M. & Raasi, S. Controlled synthesis of polyubiquitin Chains. Methods Enzymol. 399, 21–36 (2005).

    Article  CAS  Google Scholar 

  28. Komander, D., Clague, M.J. & Urbe, S. Breaking the chains: structure and function of the deubiquitinases. Nat. Rev. Mol. Cell Biol. 10, 550–563 (2009).

    Article  CAS  Google Scholar 

  29. Fushman, D. & Walker, O. Exploring linkage dependence of polyubiquitin conformations using molecular modeling. J. Mol. Biol. 395, 803–814 (2010).

    Article  CAS  Google Scholar 

  30. Wang, T. et al. Evidence for bidentate substrate binding as the basis for the K48 linkage specificity of otubain 1. J. Mol. Biol. 386, 1011–1023 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Cooper, E.M. et al. K63-specific deubiquitination by two JAMM/MPN+ complexes: BRISC-associated Brcc36 and proteasomal Poh1. EMBO J. 28, 621–631 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Popp, M.W., Artavanis-Tsakonas, K. & Ploegh, H.L. Substrate filtering by the active site crossover loop in UCHL3 revealed by sortagging and gain-of-function mutations. J. Biol. Chem. 284, 3593–3602 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Reyes-Turcu, F.E. et al. The ubiquitin binding domain ZnF UBP recognizes the C-terminal diglycine motif of unanchored ubiquitin. Cell 124, 1197–1208 (2006).

    Article  CAS  Google Scholar 

  34. Komander, D. et al. The structure of the CYLD USP domain explains its specificity for Lys63-linked polyubiquitin and reveals a B box module. Mol. Cell 29, 451–464 (2008).

    Article  CAS  Google Scholar 

  35. McCullough, J., Clague, M.J. & Urbe, S. AMSH is an endosome-associated ubiquitin isopeptidase. J. Cell Biol. 166, 487–492 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Sato, Y. et al. Structural basis for specific cleavage of Lys 63-linked polyubiquitin chains. Nature 455, 358–362 (2008).

    Article  CAS  Google Scholar 

  37. Winborn, B.J. et al. The deubiquitinating enzyme ataxin-3, a polyglutamine disease protein, edits Lys63 linkages in mixed linkage ubiquitin chains. J. Biol. Chem. 283, 26436–26443 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Komander, D. et al. Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. EMBO Rep. 10, 466–473 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, T. et al. Evidence for bidentate substrate binding as the basis for the K48 linkage specificity of otubain 1. J. Mol. Biol. 386, 1011–1023 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Cooper, E.M., Boeke, J.D. & Cohen, R.E. Specificity of the BRISC deubiquitinating enzyme is not due to selective binding to Lys63-linked polyubiquitin. J. Biol. Chem. 285, 10344–10352 (2010).

    Article  CAS  Google Scholar 

  41. Cook, W.J., Jeffrey, L.C., Carson, M., Chen, Z. & Pickart, C.M. Structure of a diubiquitin conjugate and a model for interaction with ubiquitin conjugating enzyme (E2). J. Biol. Chem. 267, 16467–16471 (1992).

    CAS  Google Scholar 

  42. Eddins, M.J., Varadan, R., Fushman, D., Pickart, C.M. & Wolberger, C. Crystal structure and solution NMR studies of Lys48-linked tetraubiquitin at neutral pH. J. Mol. Biol. 367, 204–211 (2007).

    Article  CAS  Google Scholar 

  43. Wu-Baer, F., Lagrazon, K., Yuan, W. & Baer, R. The BRCA1/BARD1 heterodimer assembles polyubiquitin chains through an unconventional linkage involving lysine residue K6 of ubiquitin. J. Biol. Chem. 278, 34743–34746 (2003).

    Article  CAS  Google Scholar 

  44. Nishikawa, H. et al. BRCA1-associated protein 1 interferes with BRCA1/BARD1 RING heterodimer activity. Cancer Res. 69, 111–119 (2009).

    Article  CAS  Google Scholar 

  45. Hermanson, G.T. Bioconjugate Techniques 2nd ed. (Academic Press, 2008).

Download references

Acknowledgements

We thank K.D. Wilkinson (Emory University), B. Kessler (Oxford University), S. Urbe, M. Clague (Liverpool University) and P. Cohen (MRC Protein Phosphorylation Unit, Dundee) for constructs, S. Peak-Chew, F. Begum and E. Stephens for MS/MS and members of the Laboratory of Molecular Biology for reagents. We thank L. James (Laboratory of Molecular Biology) for suggestions on kinetic analysis. This work was supported by the Medical Research Council, United Kingdom.

Author information

Authors and Affiliations

Authors

Contributions

J.W.C. and D.K. initiated the study. J.W.C. and S.V. designed the ubiquitin chain synthesis and developed the quantitative blot method for deubiquitinase kinetics. S.V. implemented and characterized the synthesis with assistance from D.P.N. and implemented and analyzed the quantitative kinetics on TRABID by western blot. S.V. and D.K. performed structural studies, analyzed structural data and designed and analyzed the deubiquitinase screen. Y.Y. and D.K. developed the fluorescent deubiquitinase assay that S.V. applied to estimate the Kms for TRABID. S.V., D.K. and J.W.C. analyzed the data and wrote the paper.

Corresponding authors

Correspondence to David Komander or Jason W Chin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Table 1 and Supplementary Methods (PDF 2309 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Virdee, S., Ye, Y., Nguyen, D. et al. Engineered diubiquitin synthesis reveals Lys29-isopeptide specificity of an OTU deubiquitinase. Nat Chem Biol 6, 750–757 (2010). https://doi.org/10.1038/nchembio.426

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.426

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing