Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The pimeloyl-CoA synthetase BioW defines a new fold for adenylate-forming enzymes

Abstract

Reactions that activate carboxylates through acyl-adenylate intermediates are found throughout biology and include acyl- and aryl-CoA synthetases and tRNA synthetases. Here we describe the characterization of Aquifex aeolicus BioW, which represents a new protein fold within the superfamily of adenylating enzymes. Substrate-bound structures identified the enzyme active site and elucidated the mechanistic strategy for conjugating CoA to the seven-carbon α,ω-dicarboxylate pimelate, a biotin precursor. Proper position of reactive groups for the two half-reactions is achieved solely through movements of active site residues, as confirmed by site-directed mutational analysis. The ability of BioW to hydrolyze adenylates of noncognate substrates is reminiscent of pre-transfer proofreading observed in some tRNA synthetases, and we show that this activity can be abolished by mutation of a single residue. These studies illustrate how BioW can carry out three different biologically prevalent chemical reactions (adenylation, thioesterification, and proofreading) in the context of a new protein fold.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reaction catalyzed by BioW and representative homologs.
Figure 2: Biochemical activity of AaBioW.
Figure 3: Crystal structures of AaBioW and ligand complexes.
Figure 4: Structure-based mutational analysis of the AaBioW active site.
Figure 5: Proofreading activity of the wild-type and R159A AaBioWs.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. McMahon, R.J. Biotin in metabolism and molecular biology. Annu. Rev. Nutr. 22, 221–239 (2002).

    CAS  PubMed  Google Scholar 

  2. DeTitta, G.T., Edmonds, J.W., Stallings, W. & Donohue, J. Molecular structure of biotin. Results of two independent crystal structure investigations. J. Am. Chem. Soc. 98, 1920–1926 (1976).

    CAS  PubMed  Google Scholar 

  3. Chapman-Smith, A. & Cronan, J.E. Jr. Molecular biology of biotin attachment to proteins. J. Nutr. 129 (Suppl. 1), 477S–484S (1999).

    CAS  PubMed  Google Scholar 

  4. Tong, L. Structure and function of biotin-dependent carboxylases. Cell. Mol. Life Sci. 70, 863–891 (2013).

    CAS  PubMed  Google Scholar 

  5. Streit, W.R. & Entcheva, P. Biotin in microbes, the genes involved in its biosynthesis, its biochemical role and perspectives for biotechnological production. Appl. Microbiol. Biotechnol. 61, 21–31 (2003).

    CAS  PubMed  Google Scholar 

  6. Eisenberg, M.A. & Star, C. Synthesis of 7-oxo-8-aminopelargonic acid, a biotin vitamer, in cell-free extracts of Escherichia coli biotin auxotrophs. J. Bacteriol. 96, 1291–1297 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Eisenberg, M.A. & Krell, K. Dethiobiotin synthesis from 7,8-diaminolargonic acid in cell-free extracts of a biotin auxotroph of Escherichia coli K-12. J. Biol. Chem. 244, 5503–5509 (1969).

    CAS  PubMed  Google Scholar 

  8. Eisenberg, M.A. & Krell, K. Synthesis of desthiobiotin from 7,8-diaminopelargonic acid in biotin auxotrophs of Escherichia coli K-12. J. Bacteriol. 98, 1227–1231 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lin, S. & Cronan, J.E. Closing in on complete pathways of biotin biosynthesis. Mol. Biosyst. 7, 1811–1821 (2011).

    CAS  PubMed  Google Scholar 

  10. Cronan, J.E. & Lin, S. Synthesis of the α,ω-dicarboxylic acid precursor of biotin by the canonical fatty acid biosynthetic pathway. Curr. Opin. Chem. Biol. 15, 407–413 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ifuku, O. et al. Origin of carbon atoms of biotin. 13C-NMR studies on biotin biosynthesis in Escherichia coli. Eur. J. Biochem. 220, 585–591 (1994).

    CAS  PubMed  Google Scholar 

  12. Sanyal, I., Lee, S.-L. & Flint, D.H. Biosynthesis of pimeloyl-CoA, a biotin precursor in Escherichia coli, follows a modified fatty acid synthesis pathway: 13C-labeling studies. J. Am. Chem. Soc. 116, 2637–2638 (1994).

    CAS  Google Scholar 

  13. Lin, S., Hanson, R.E. & Cronan, J.E. Biotin synthesis begins by hijacking the fatty acid synthetic pathway. Nat. Chem. Biol. 6, 682–688 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Agarwal, V., Lin, S., Lukk, T., Nair, S.K. & Cronan, J.E. Structure of the enzyme-acyl carrier protein (ACP) substrate gatekeeper complex required for biotin synthesis. Proc. Natl. Acad. Sci. USA 109, 17406–17411 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bower, S. et al. Cloning, sequencing, and characterization of the Bacillus subtilis biotin biosynthetic operon. J. Bacteriol. 178, 4122–4130 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Cryle, M.J. & De Voss, J.J. Carbon-carbon bond cleavage by cytochrome p450(BioI)(CYP107H1). Chem. Commun. (Camb.) 1, 86–87 (2004).

    Google Scholar 

  17. Stok, J.E. & De Voss, J. Expression, purification, and characterization of BioI: a carbon-carbon bond cleaving cytochrome P450 involved in biotin biosynthesis in Bacillus subtilis. Arch. Biochem. Biophys. 384, 351–360 (2000).

    CAS  PubMed  Google Scholar 

  18. Cryle, M.J. & Schlichting, I. Structural insights from a P450 Carrier Protein complex reveal how specificity is achieved in the P450(BioI) ACP complex. Proc. Natl. Acad. Sci. USA 105, 15696–15701 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ploux, O., Soularue, P., Marquet, A., Gloeckler, R. & Lemoine, Y. Investigation of the first step of biotin biosynthesis in Bacillus sphaericus. Purification and characterization of the pimeloyl-CoA synthase, and uptake of pimelate. Biochem. J. 287, 685–690 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Manandhar, M. & Cronan, J.E. Proofreading of noncognate acyl adenylates by an acyl-coenzyme a ligase. Chem. Biol. 20, 1441–1446 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gulick, A.M. Conformational dynamics in the Acyl-CoA synthetases, adenylation domains of non-ribosomal peptide synthetases, and firefly luciferase. ACS Chem. Biol. 4, 811–827 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Schmelz, S. & Naismith, J.H. Adenylate-forming enzymes. Curr. Opin. Struct. Biol. 19, 666–671 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gerlt, J.A. et al. Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST): A web tool for generating protein sequence similarity networks. Biochim. Biophys. Acta 1854, 1019–1037 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Holm, L. & Park, J. DaliLite workbench for protein structure comparison. Bioinformatics 16, 566–567 (2000).

    CAS  PubMed  Google Scholar 

  25. Berman, H.M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Osanai, T. & Tanaka, K. Keeping in touch with PII: PII-interacting proteins in unicellular cyanobacteria. Plant Cell Physiol. 48, 908–914 (2007).

    CAS  PubMed  Google Scholar 

  27. Forchhammer, K. & Lüddecke, J. Sensory properties of the PII signalling protein family. FEBS J. 283, 425–437 (2016).

    CAS  PubMed  Google Scholar 

  28. Fawaz, M.V., Topper, M.E. & Firestine, S.M. The ATP-grasp enzymes. Bioorg. Chem. 39, 185–191 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rossmann, M.G. & Argos, P. The taxonomy of binding sites in proteins. Mol. Cell. Biochem. 21, 161–182 (1978).

    CAS  PubMed  Google Scholar 

  30. Cheek, S., Zhang, H. & Grishin, N.V. Sequence and structure classification of kinases. J. Mol. Biol. 320, 855–881 (2002).

    CAS  PubMed  Google Scholar 

  31. Moras, D. Structural and functional relationships between aminoacyl-tRNA synthetases. Trends Biochem. Sci. 17, 159–164 (1992).

    CAS  PubMed  Google Scholar 

  32. Witte, G., Hartung, S., Büttner, K. & Hopfner, K.P. Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates. Mol. Cell 30, 167–178 (2008).

    CAS  PubMed  Google Scholar 

  33. Martinez, S.E., Heikaus, C.C., Klevit, R.E. & Beavo, J.A. The structure of the GAF A domain from phosphodiesterase 6C reveals determinants of cGMP binding, a conserved binding surface, and a large cGMP-dependent conformational change. J. Biol. Chem. 283, 25913–25919 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Prakash, S., Johnson, R.E. & Prakash, L. Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu. Rev. Biochem. 74, 317–353 (2005).

    CAS  PubMed  Google Scholar 

  35. Balcher, M.R. & Lichstein, H.C. Growth promotion and antibiotin effect of homobiotin and norbiotin. J. Bacteriol. 58, 579–583 (1949).

    CAS  PubMed  Google Scholar 

  36. Gulick, A.M., Starai, V.J., Horswill, A.R., Homick, K.M. & Escalante-Semerena, J.C. The 1.75 A crystal structure of acetyl-CoA synthetase bound to adenosine-5′-propylphosphate and coenzyme A. Biochemistry 42, 2866–2873 (2003).

    CAS  PubMed  Google Scholar 

  37. Conti, E., Stachelhaus, T., Marahiel, M.A. & Brick, P. Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. EMBO J. 16, 4174–4183 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Branchini, B.R., Murtiashaw, M.H., Magyar, R.A. & Anderson, S.M. The role of lysine 529, a conserved residue of the acyl-adenylate-forming enzyme superfamily, in firefly luciferase. Biochemistry 39, 5433–5440 (2000).

    CAS  PubMed  Google Scholar 

  39. Onesti, S., Miller, A.D. & Brick, P. The crystal structure of the lysyl-tRNA synthetase (LysU) from Escherichia coli. Structure 3, 163–176 (1995).

    CAS  PubMed  Google Scholar 

  40. Schmelz, S. et al. AcsD catalyzes enantioselective citrate desymmetrization in siderophore biosynthesis. Nat. Chem. Biol. 5, 174–182 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Yadavalli, S.S. & Ibba, M. Quality control in aminoacyl-tRNA synthesis its role in translational fidelity. Adv. Protein Chem. Struct. Biol. 86, 1–43 (2012).

    CAS  PubMed  Google Scholar 

  42. Fersht, A.R. & Dingwall, C. An editing mechanism for the methionyl-tRNA synthetase in the selection of amino acids in protein synthesis. Biochemistry 18, 1250–1256 (1979).

    CAS  PubMed  Google Scholar 

  43. Jakubowski, H. Misacylation of tRNALys with noncognate amino acids by lysyl-tRNA synthetase. Biochemistry 38, 8088–8093 (1999).

    CAS  PubMed  Google Scholar 

  44. Gruic-Sovulj, I., Rokov-Plavec, J. & Weygand-Durasevic, I. Hydrolysis of non-cognate aminoacyl-adenylates by a class II aminoacyl-tRNA synthetase lacking an editing domain. FEBS Lett. 581, 5110–5114 (2007).

    CAS  PubMed  Google Scholar 

  45. Ling, J., Peterson, K.M., Simonovic, I., Söll, D. & Simonovic, M. The mechanism of pre-transfer editing in yeast mitochondrial threonyl-tRNA synthetase. J. Biol. Chem. 287, 28518–28525 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Minajigi, A. & Francklyn, C.S. Aminoacyl transfer rate dictates choice of editing pathway in threonyl-tRNA synthetase. J. Biol. Chem. 285, 23810–23817 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kinjo, A.R. & Nakamura, H. Comprehensive structural classification of ligand-binding motifs in proteins. Structure 17, 234–246 (2009).

    CAS  PubMed  Google Scholar 

  48. Walden, H. Selenium incorporation using recombinant techniques. Acta Crystallogr. D Biol. Crystallogr. 66, 352–357 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. Multiparametric scaling of diffraction intensities. Acta Crystallogr. A 59, 228–234 (2003).

    PubMed  Google Scholar 

  50. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vonrhein, C., Blanc, E., Roversi, P. & Bricogne, G. Automated structure solution with autoSHARP. Methods Mol. Biol. 364, 215–230 (2007).

    CAS  PubMed  Google Scholar 

  52. Cowtan, K. The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr. D Biol. Crystallogr. 62, 1002–1011 (2006).

    PubMed  Google Scholar 

  53. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    PubMed  Google Scholar 

  54. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    CAS  PubMed  Google Scholar 

  55. Brünger, A.T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475 (1992).

    PubMed  Google Scholar 

  56. Kabsch, W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. D Biol. Crystallogr. 66, 133–144 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Langer, G., Cohen, S.X., Lamzin, V.S. & Perrakis, A. Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat. Protoc. 3, 1171–1179 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Laskowski, R.A., Rullmannn, J.A., MacArthur, M.W., Kaptein, R. & Thornton, J.M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996).

    CAS  PubMed  Google Scholar 

  59. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Mining Microbial Genomes theme at the Carl R. Woese Institute for Genomic Biology for access to the LC–MS equipment. We also thank K. Brister and the staff at the Life Sciences Collaborative Access Team (Sector 21) at the Argonne National Labs for facilitating data collection. This work was supported by NIH grant AI15650 (to J.C.).

Author information

Authors and Affiliations

Authors

Contributions

S.K.N. and J.E.C. conceived the studies. P.E. designed and performed most of the crystallographic and biochemical experiments with the following exceptions: V.A. carried out crystallization of BaBioW, J.D. performed crystallization of SeMet AaBioW, and M.M. carried out the thin-layer chromatographic analysis. S.-H.D. assisted in mass spectrometric analysis. S.K.N. wrote the manuscript with input from P.E., M.M., and J.E.C.

Corresponding author

Correspondence to Satish K Nair.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1 and 2, and Supplementary Figures 1–12 (PDF 8102 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Estrada, P., Manandhar, M., Dong, SH. et al. The pimeloyl-CoA synthetase BioW defines a new fold for adenylate-forming enzymes. Nat Chem Biol 13, 668–674 (2017). https://doi.org/10.1038/nchembio.2359

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2359

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing