Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

YidC assists the stepwise and stochastic folding of membrane proteins

Abstract

How chaperones, insertases and translocases facilitate insertion and folding of complex cytoplasmic proteins into cellular membranes is not fully understood. Here we utilize single-molecule force spectroscopy to observe YidC, a transmembrane chaperone and insertase, sculpting the folding trajectory of the polytopic α-helical membrane protein lactose permease (LacY). In the absence of YidC, unfolded LacY inserts individual structural segments into the membrane; however, misfolding dominates the process so that folding cannot be completed. YidC prevents LacY from misfolding by stabilizing the unfolded state from which LacY inserts structural segments stepwise into the membrane until folding is completed. During stepwise insertion, YidC and the membrane together stabilize the transient folds. Remarkably, the order of insertion of structural segments is stochastic, indicating that LacY can fold along variable pathways toward the native structure. Since YidC is essential in membrane protein biogenesis and LacY is a model for the major facilitator superfamily, our observations have general relevance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Unfolding steps and intermediates of native wild-type LacY.
Figure 2: Refolding single lactose permeases.
Figure 3: YidC suppresses misfolding and assists folding of LacY.
Figure 4: LacY shows variable folding intermediates toward full refolding.
Figure 5: Schematic model of the folding free-energy landscape of LacY sculpted by YidC.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Driessen, A.J. & Nouwen, N. Protein translocation across the bacterial cytoplasmic membrane. Annu. Rev. Biochem. 77, 643–667 (2008).

    CAS  PubMed  Google Scholar 

  2. Dalbey, R.E., Wang, P. & Kuhn, A. Assembly of bacterial inner membrane proteins. Annu. Rev. Biochem. 80, 161–187 (2011).

    CAS  PubMed  Google Scholar 

  3. Luirink, J., Yu, Z., Wagner, S. & de Gier, J.W. Biogenesis of inner membrane proteins in Escherichia coli. Biochim. Biophys. Acta 1817, 965–976 (2012).

    CAS  PubMed  Google Scholar 

  4. Stephenson, K. Sec-dependent protein translocation across biological membranes: evolutionary conservation of an essential protein transport pathway (review). Mol. Membr. Biol. 22, 17–28 (2005).

    CAS  PubMed  Google Scholar 

  5. van Bloois, E. et al. The Sec-independent function of Escherichia coli YidC is evolutionary-conserved and essential. J. Biol. Chem. 280, 12996–13003 (2005).

    CAS  PubMed  Google Scholar 

  6. Wang, P. & Dalbey, R.E. Inserting membrane proteins: the YidC/Oxa1/Alb3 machinery in bacteria, mitochondria, and chloroplasts. Biochim. Biophys. Acta 1808, 866–875 (2011).

    CAS  PubMed  Google Scholar 

  7. Saller, M.J., Wu, Z.C., de Keyzer, J. & Driessen, A.J. The YidC/Oxa1/Alb3 protein family: common principles and distinct features. Biol. Chem. 393, 1279–1290 (2012).

    CAS  PubMed  Google Scholar 

  8. Hartl, F.U., Bracher, A. & Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 475, 324–332 (2011).

    CAS  PubMed  Google Scholar 

  9. Engel, A. & Gaub, H.E. Structure and mechanics of membrane proteins. Annu. Rev. Biochem. 77, 127–148 (2008).

    CAS  PubMed  Google Scholar 

  10. Kedrov, A., Janovjak, H., Ziegler, C., Kuhlbrandt, W. & Muller, D.J. Observing folding pathways and kinetics of a single sodium-proton antiporter from Escherichia coli. J. Mol. Biol. 355, 2–8 (2006).

    CAS  PubMed  Google Scholar 

  11. Kessler, M., Gottschalk, K.E., Janovjak, H., Muller, D.J. & Gaub, H.E. Bacteriorhodopsin folds into the membrane against an external force. J. Mol. Biol. 357, 644–654 (2006).

    CAS  PubMed  Google Scholar 

  12. Damaghi, M., Köster, S., Bippes, C.A., Yildiz, O. & Müller, D.J. One β hairpin follows the other: exploring refolding pathways and kinetics of the transmembrane β-barrel protein OmpG. Angew. Chem. Int. Edn Engl. 50, 7422–7424 (2011).

    CAS  Google Scholar 

  13. Bosshart, P.D. et al. The transmembrane protein KpOmpA anchoring the outer membrane of Klebsiella pneumoniae unfolds and refolds in response to tensile load. Structure 20, 121–127 (2012).

    CAS  PubMed  Google Scholar 

  14. Bechtluft, P. et al. Direct observation of chaperone-induced changes in a protein folding pathway. Science 318, 1458–1461 (2007).

    CAS  PubMed  Google Scholar 

  15. Kaiser, C.M. et al. Tracking UNC-45 chaperone-myosin interaction with a titin mechanical reporter. Biophys. J. 102, 2212–2219 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Nunes, J.M., Mayer-Hartl, M., Hartl, F.U. & Müller, D.J. Action of the Hsp70 chaperone system observed with single proteins. Nat. Commun. 6, 6307 (2015).

    CAS  PubMed  Google Scholar 

  17. Thoma, J., Burmann, B.M., Hiller, S. & Müller, D.J. Impact of holdase chaperones Skp and SurA on the folding of β-barrel outer-membrane proteins. Nat. Struct. Mol. Biol. 22, 795–802 (2015).

    CAS  PubMed  Google Scholar 

  18. Marger, M.D. & Saier, M.H. Jr. A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem. Sci. 18, 13–20 (1993).

    CAS  PubMed  Google Scholar 

  19. Abramson, J. et al. Structure and mechanism of the lactose permease of Escherichia coli. Science 301, 610–615 (2003).

    CAS  PubMed  Google Scholar 

  20. Guan, L., Mirza, O., Verner, G., Iwata, S. & Kaback, H.R. Structural determination of wild-type lactose permease. Proc. Natl. Acad. Sci. USA 104, 15294–15298 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Nagamori, S., Smirnova, I.N. & Kaback, H.R. Role of YidC in folding of polytopic membrane proteins. J. Cell Biol. 165, 53–62 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhu, L., Kaback, H.R. & Dalbey, R.E. YidC protein, a molecular chaperone for LacY protein folding via the SecYEG protein machinery. J. Biol. Chem. 288, 28180–28194 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Serdiuk, T. et al. Substrate-induced changes in the structural properties of LacY. Proc. Natl. Acad. Sci. USA 111, E1571–E1580 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Serdiuk, T., Sugihara, J., Mari, S.A., Kaback, H.R. & Müller, D.J. Observing a lipid-dependent alteration in single lactose permeases. Structure 23, 754–761 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Viitanen, P., Newman, M.J., Foster, D.L., Wilson, T.H. & Kaback, H.R. Purification, reconstitution, and characterization of the lac permease of Escherichia coli. Methods Enzymol. 125, 429–452 (1986).

    CAS  PubMed  Google Scholar 

  26. Herzlinger, D., Viitanen, P., Carrasco, N. & Kaback, H.R. Monoclonal antibodies against the lac carrier protein from Escherichia coli. 2. Binding studies with membrane vesicles and proteoliposomes reconstituted with purified lac carrier protein. Biochemistry 23, 3688–3693 (1984).

    CAS  PubMed  Google Scholar 

  27. Müller, D.J. & Engel, A. Atomic force microscopy and spectroscopy of native membrane proteins. Nat. Protoc. 2, 2191–2197 (2007).

    PubMed  Google Scholar 

  28. Kedrov, A., Krieg, M., Ziegler, C., Kuhlbrandt, W. & Muller, D.J. Locating ligand binding and activation of a single antiporter. EMBO Rep. 6, 668–674 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Sapra, K.T., Besir, H., Oesterhelt, D. & Muller, D.J. Characterizing molecular interactions in different bacteriorhodopsin assemblies by single-molecule force spectroscopy. J. Mol. Biol. 355, 640–650 (2006).

    CAS  PubMed  Google Scholar 

  30. Ge, L., Perez, C., Waclawska, I., Ziegler, C. & Muller, D.J. Locating an extracellular K+-dependent interaction site that modulates betaine-binding of the Na+-coupled betaine symporter BetP. Proc. Natl. Acad. Sci. USA 108, E890–E898 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bippes, C.A. et al. Peptide transporter DtpA has two alternate conformations, one of which is promoted by inhibitor binding. Proc. Natl. Acad. Sci. USA 110, E3978–E3986 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Dowhan, W. & Bogdanov, M. Lipid-dependent membrane protein topogenesis. Annu. Rev. Biochem. 78, 515–540 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Oesterhelt, F. et al. Unfolding pathways of individual bacteriorhodopsins. Science 288, 143–146 (2000).

    CAS  PubMed  Google Scholar 

  34. Fanelli, F. & Seeber, M. Structural insights into retinitis pigmentosa from unfolding simulations of rhodopsin mutants. FASEB J. 24, 3196–3209 (2010).

    CAS  PubMed  Google Scholar 

  35. Kappel, C. & Grubmüller, H. Velocity-dependent mechanical unfolding of bacteriorhodopsin is governed by a dynamic interaction network. Biophys. J. 100, 1109–1119 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Bibi, E. & Kaback, H.R. In vivo expression of the lacY gene in two segments leads to functional lac permease. Proc. Natl. Acad. Sci. USA 87, 4325–4329 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zen, K.H., McKenna, E., Bibi, E., Hardy, D. & Kaback, H.R. Expression of lactose permease in contiguous fragments as a probe for membrane-spanning domains. Biochemistry 33, 8198–8206 (1994).

    CAS  PubMed  Google Scholar 

  38. Cymer, F., von Heijne, G. & White, S.H. Mechanisms of integral membrane protein insertion and folding. J. Mol. Biol. 427, 999–1022 (2015).

    CAS  PubMed  Google Scholar 

  39. Müller, D.J. et al. Observing membrane protein diffusion at subnanometer resolution. J. Mol. Biol. 327, 925–930 (2003).

    PubMed  Google Scholar 

  40. Bogdanov, M., Xie, J., Heacock, P. & Dowhan, W. To flip or not to flip: lipid-protein charge interactions are a determinant of final membrane protein topology. J. Cell Biol. 182, 925–935 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Guan, L. & Kaback, H.R. Properties of a LacY efflux mutant. Biochemistry 48, 9250–9255 (2009).

    CAS  PubMed  Google Scholar 

  42. Bowie, J.U. Solving the membrane protein folding problem. Nature 438, 581–589 (2005).

    CAS  PubMed  Google Scholar 

  43. Harris, N.J. & Booth, P.J. Folding and stability of membrane transport proteins in vitro. Biochim. Biophys. Acta 1818, 1055–1066 (2012).

    CAS  PubMed  Google Scholar 

  44. Engelman, D.M. et al. Membrane protein folding: beyond the two stage model. FEBS Lett. 555, 122–125 (2003).

    CAS  PubMed  Google Scholar 

  45. Kumazaki, K. et al. Structural basis of Sec-independent membrane protein insertion by YidC. Nature 509, 516–520 (2014).

    CAS  PubMed  Google Scholar 

  46. Shimokawa-Chiba, N. et al. Hydrophilic microenvironment required for the channel-independent insertase function of YidC protein. Proc. Natl. Acad. Sci. USA 112, 5063–5068 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kumazaki, K. et al. Crystal structure of Escherichia coli YidC, a membrane protein chaperone and insertase. Sci. Rep. 4, 7299 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Rapoport, T.A., Goder, V., Heinrich, S.U. & Matlack, K.E. Membrane-protein integration and the role of the translocation channel. Trends Cell Biol. 14, 568–575 (2004).

    CAS  PubMed  Google Scholar 

  49. Van Lehn, R.C., Zhang, B. & Miller, T.F., III. Regulation of multispanning membrane protein topology via post-translational annealing. eLife 4, e08697 (2015).

    PubMed  PubMed Central  Google Scholar 

  50. White, S.H. The messy process of guiding proteins into membranes. eLife 4, e12100 (2015).

    PubMed  PubMed Central  Google Scholar 

  51. Smirnova, I. et al. Sugar binding induces an outward facing conformation of LacY. Proc. Natl. Acad. Sci. USA 104, 16504–16509 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Bustamante, C., Marko, J.F., Siggia, E.D. & Smith, S. Entropic elasticity of lambda-phage DNA. Science 265, 1599–1600 (1994).

    CAS  PubMed  Google Scholar 

  53. Kawamura, S. et al. Kinetic, energetic, and mechanical differences between dark-state rhodopsin and opsin. Structure 21, 426–437 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R.E. Dalbey (The Ohio State University) for providing plasmid pT7-7 encoding YidC with a His10 tag at the C terminus; R. Newton, J. Thoma, S. Hiller and R.E. Dalbey for encouraging and constructive comments; and S. Weiser for assistance. This work was supported by the Eidgenössische Technische Hochschule Zürich (to D.J.M.), the Swiss National Science Foundation (grant 205320_160199 to D.J.M.), the Swiss National Center of Competence in Research “NCCR Molecular Systems Engineering” (to D.J.M.), the European Union Marie Curie Actions program through the ACRITAS Initial Training Network (FP7-PEOPLE-2012-ITN, project 317348 to D.J.M.), U.S. National Institutes of Health grants DK51131, DK069463 and GM073210 (to H.R.K.), and U.S. National Science Foundation grant MCB-1129551 (to H.R.K.).

Author information

Authors and Affiliations

Authors

Contributions

T.S., D.J.M. and H.R.K. designed the experiments. J.S. and D.B. cloned, expressed, purified and reconstituted LacY and YidC. T.S. performed the SMFS experiments. S.A.M. recorded AFM images. All authors analyzed experimental data and wrote the paper.

Corresponding authors

Correspondence to H Ronald Kaback or Daniel J Müller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–10 and Supplementary Tables 1–4. (PDF 1501 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serdiuk, T., Balasubramaniam, D., Sugihara, J. et al. YidC assists the stepwise and stochastic folding of membrane proteins. Nat Chem Biol 12, 911–917 (2016). https://doi.org/10.1038/nchembio.2169

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2169

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing