Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Fatty acylation of Wnt proteins

Abstract

Wnt proteins are critical regulators of signaling networks during embryonic development and in adult tissue homeostasis. The generation of active Wnt proteins requires their regulated secretion into the extracellular space. Once secreted, Wnts signal through the cell surface via receptor binding on Wnt-receiving cells, a mechanism that is prevalent in stem cell and cancer biology. Important to both Wnt secretion and receptor recognition is their post-translational fatty acylation. In this Perspective, we highlight progress in elucidating the biochemistry of Wnt fatty acylation and provide a molecular view on the enzymology of substrate recognition and catalysis, with a focus on the Wnt O-acyltransferase porcupine. Special emphasis is given to Wnt fatty acid biosynthesis, Wnt-porcupine interactions, clinical mutations of porcupine and emerging therapeutics for perturbing Wnt fatty acylation in cancer. Finally, we discuss models for the functional role of the unsaturated fatty acyl chain in mediating lipid-protein interactions and in Wnt trafficking.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conserved features of the Wnt fatty acylation site.
Figure 2: Biosynthesis and transfer of unsaturated fatty acids to Wnt.
Figure 3: Molecular mechanism of fatty acyl desaturation by stearoyl-CoA desaturase.
Figure 4: Functional mapping of the porcupine-binding site on Wnt.
Figure 5: Functional analysis of porcupine mutations, splice variants and chemical inhibitors.
Figure 6: Molecular basis for fatty deacylation of Wnt by Notum.
Figure 7: Role of the unsaturated fatty acyl chain and proposed models for Wnt trafficking.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Srivastava, M. et al. The Trichoplax genome and the nature of placozoans. Nature 454, 955–960 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Kusserow, A. et al. Unexpected complexity of the Wnt gene family in a sea anemone. Nature 433, 156–160 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Holstein, T.W. The evolution of the Wnt pathway. Cold Spring Harb. Perspect. Biol. 4, a007922 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nusse, R. & Varmus, H.E. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31, 99–109 (1982).

    Article  CAS  PubMed  Google Scholar 

  5. Sharma, R.P. & Chopra, V.L. Effect of the Wingless (wg1) mutation on wing and haltere development in Drosophila melanogaster. Dev. Biol. 48, 461–465 (1976).

    Article  CAS  PubMed  Google Scholar 

  6. Rijsewijk, F. et al. The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell 50, 649–657 (1987).

    Article  CAS  PubMed  Google Scholar 

  7. Willert, K. & Nusse, R. Wnt proteins. Cold Spring Harb. Perspect. Biol. 4, a007864 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. MacDonald, B.T. et al. Disulfide bond requirements for active Wnt ligands. J. Biol. Chem. 289, 18122–18136 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cui, M., Siriwon, N., Li, E., Davidson, E.H. & Peter, I.S. Specific functions of the Wnt signaling system in gene regulatory networks throughout the early sea urchin embryo. Proc. Natl. Acad. Sci. USA 111, E5029–E5038 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang, J., Sinha, T. & Wynshaw-Boris, A. Wnt signaling in mammalian development: lessons from mouse genetics. Cold Spring Harb. Perspect. Biol. 4, a007963 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kikuchi, A., Yamamoto, H., Sato, A. & Matsumoto, S. in International Review of Cell and Molecular Biology (ed. Kwang, W.J.) 21–71 (Academic Press, 2011).

    Google Scholar 

  12. Niehrs, C. The complex world of WNT receptor signalling. Nat. Rev. Mol. Cell Biol. 13, 767–779 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Malinauskas, T. & Jones, E.Y. Extracellular modulators of Wnt signalling. Curr. Opin. Struct. Biol. 29, 77–84 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Polakis, P. Wnt signaling in cancer. Cold Spring Harb. Perspect. Biol. 4, a008052 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Clevers, H. & Nusse, R. Wnt/β-catenin signaling and disease. Cell 149, 1192–1205 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Van Camp, J.K., Beckers, S., Zegers, D. & Van Hul, W. Wnt signaling and the control of human stem cell fate. Stem Cell Rev. 10, 207–229 (2014).

    Article  CAS  Google Scholar 

  17. Willert, K. et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423, 448–452 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Takada, R. et al. Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev. Cell 11, 791–801 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Janda, C.Y., Waghray, D., Levin, A.M., Thomas, C. & Garcia, K.C. Structural basis of Wnt recognition by Frizzled. Science 337, 59–64 (2012). Provides the first co-crystal structure of Xenopus Wnt8 in complex with a soluble mFZD8 CRD, demonstrating a lipid-protein interaction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hannoush, R.N. & Arenas-Ramirez, N. Imaging the lipidome: omega-alkynyl fatty acids for detection and cellular visualization of lipid-modified proteins. ACS Chem. Biol. 4, 581–587 (2009). Reports the development of nonradioactive alkyne fatty acid probes of different chain lengths for detecting protein fatty acylation (palmitoylation and myristoylation).

    Article  CAS  PubMed  Google Scholar 

  21. Gao, X., Arenas-Ramirez, N., Scales, S.J. & Hannoush, R.N. Membrane targeting of palmitoylated Wnt and Hedgehog revealed by chemical probes. FEBS Lett. 585, 2501–2506 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Gao, X. & Hannoush, R.N. Single-cell imaging of Wnt palmitoylation by the acyltransferase porcupine. Nat. Chem. Biol. 10, 61–68 (2014). Reports a click-based technology to visualize palmitoylated forms of Wnt proteins in cells, porcupine fatty acid substrate preference, incorporation of fatty acids of different chain lengths by Wnts, and S-palmitoylation of human porcupine.

    Article  CAS  PubMed  Google Scholar 

  23. Miranda, M. et al. Identification of the WNT1 residues required for palmitoylation by Porcupine. FEBS Lett. 588, 4815–4824 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dijksterhuis, J.P. et al. Systematic mapping of WNT-FZD protein interactions reveals functional selectivity by distinct WNT-FZD pairs. J. Biol. Chem. 290, 6789–6798 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bhanot, P. et al. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382, 225–230 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Ching, W., Hang, H.C. & Nusse, R. Lipid-independent secretion of a Drosophila Wnt protein. J. Biol. Chem. 283, 17092–17098 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chu, M.L.-H. et al. structural Studies of Wnts and identification of an LRP6 binding site. Structure 21, 1235–1242 (2013). Describes the structure of the N-terminal domain and a linker of the C-terminal domain of Drosophila WntD, revealing a fist-like conformation of the thumb region.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hannoush, R.N. Synthetic protein lipidation. Curr. Opin. Chem. Biol. 28, 39–46 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Rios-Esteves, J. & Resh, M.D. Stearoyl CoA desaturase is required to produce active, lipid-modified Wnt proteins. Cell Rep. 4, 1072–1081 (2013). Identifies Scd1 as a key player required for fatty acylation of Wnt3a and Wnt5a.

    Article  CAS  PubMed  Google Scholar 

  30. Omary, M.B. & Trowbridge, I.S. Biosynthesis of the human transferrin receptor in cultured cells. J. Biol. Chem. 256, 12888–12892 (1981).

    CAS  PubMed  Google Scholar 

  31. Pepinsky, R.B. et al. Identification of a palmitic acid-modified form of human Sonic hedgehog. J. Biol. Chem. 273, 14037–14045 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Buglino, J.A. & Resh, M.D. Hhat is a palmitoylacyltransferase with specificity for N-palmitoylation of Sonic Hedgehog. J. Biol. Chem. 283, 22076–22088 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hodson, L. & Fielding, B.A. Stearoyl-CoA desaturase: rogue or innocent bystander? Prog. Lipid Res. 52, 15–42 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Kihara, A. Very long-chain fatty acids: elongation, physiology and related disorders. J. Biochem. 152, 387–395 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Mashek, D.G., Li, L.O. & Coleman, R.A. Long-chain acyl-CoA synthetases and fatty acid channeling. Future Lipidol. 2, 465–476 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Enoch, H.G., Catalá, A. & Strittmatter, P. Mechanism of rat liver microsomal stearyl-CoA desaturase. Studies of the substrate specificity, enzyme-substrate interactions, and the function of lipid. J. Biol. Chem. 251, 5095–5103 (1976).

    CAS  PubMed  Google Scholar 

  37. Fox, B.G., Lyle, K.S. & Rogge, C.E. Reactions of the diiron enzyme stearoyl-acyl carrier protein desaturase. Acc. Chem. Res. 37, 421–429 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Bai, Y. et al. X-ray structure of a mammalian stearoyl-CoA desaturase. Nature 524, 252–256 (2015). Reports the structure of human stearoyl-CoA desaturase 1 in complex with C18:0-CoA, providing a structural basis for the regioselective and stereoselective dehydrogenation reaction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, H. et al. Crystal structure of human stearoyl-coenzyme A desaturase in complex with substrate. Nat. Struct. Mol. Biol. 22, 581–585 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Shanklin, J., Whittle, E. & Fox, B.G. Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry 33, 12787–12794 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Hofmann, K. A superfamily of membrane-bound O-acyltransferases with implications for wnt signaling. Trends Biochem. Sci. 25, 111–112 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Kadowaki, T., Wilder, E., Klingensmith, J., Zachary, K. & Perrimon, N. The segment polarity gene porcupine encodes a putative multitransmembrane protein involved in Wingless processing. Genes Dev. 10, 3116–3128 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. van den Heuvel, M., Harryman-Samos, C., Klingensmith, J., Perrimon, N. & Nusse, R. Mutations in the segment polarity genes wingless and porcupine impair secretion of the wingless protein. EMBO J. 12, 5293–5302 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rios-Esteves, J., Haugen, B. & Resh, M.D. Identification of key residues and regions important for porcupine-mediated Wnt acylation. J. Biol. Chem. 289, 17009–17019 (2014). Examines Wnt3a-porcupine interactions and the importance of FDH-related and other mutations on porcupine activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Konitsiotis, A.D. et al. Topological analysis of Hedgehog acyltransferase, a multipalmitoylated transmembrane protein. J. Biol. Chem. 290, 3293–3307 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Covey, T.M. et al. PORCN moonlights in a Wnt-independent pathway that regulates cancer cell proliferation. PLoS One 7, e34532 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Proffitt, K.D. & Virshup, D.M. Precise regulation of porcupine activity is required for physiological Wnt signaling. J. Biol. Chem. 287, 34167–34178 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bornholdt, D. et al. PORCN mutations in focal dermal hypoplasia: coping with lethality. Hum. Mutat. 30, E618–E628 (2009).

    Article  PubMed  Google Scholar 

  49. Froyen, G. et al. Novel PORCN mutations in focal dermal hypoplasia. Clin. Genet. 76, 535–543 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Lombardi, M.P. et al. Mutation update for the PORCN gene. Hum. Mutat. 32, 723–728 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Nakanishi, G. et al. Novel and recurrent PORCN gene mutations in almost unilateral and typical focal dermal hypoplasia patients. Eur. J. Dermatol. 23, 64–67 (2013).

    CAS  PubMed  Google Scholar 

  52. Wang, X. et al. Mutations in X-linked PORCN, a putative regulator of Wnt signaling, cause focal dermal hypoplasia. Nat. Genet. 39, 836–838 (2007). Established the first connection between mutations in porcupine and the X-linked dominant disorder focal dermal hypoplasia (FDH).

    Article  CAS  PubMed  Google Scholar 

  53. Murakami, C. et al. Focal dermal hypoplasia: a case report and literature review. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 112, e11–e18 (2011).

    Article  PubMed  Google Scholar 

  54. Liu, W. et al. Deletion of Porcn in mice leads to multiple developmental defects and models human focal dermal hypoplasia (Goltz syndrome). PLoS One 7, e32331 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Barrott, J.J., Cash, G.M., Smith, A.P., Barrow, J.R. & Murtaugh, L.C. Deletion of mouse Porcn blocks Wnt ligand secretion and reveals an ectodermal etiology of human focal dermal hypoplasia/Goltz syndrome. Proc. Natl. Acad. Sci. USA 108, 12752–12757 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Biechele, S., Cox, B.J. & Rossant, J. Porcupine homolog is required for canonical Wnt signaling and gastrulation in mouse embryos. Dev. Biol. 355, 275–285 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Caricasole, A., Ferraro, T., Rimland, J.M. & Terstappen, G.C. Molecular cloning and initial characterization of the MG61/PORC gene, the human homologue of the Drosophila segment polarity gene Porcupine. Gene 288, 147–157 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Chen, B. et al. Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat. Chem. Biol. 5, 100–107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dodge, M.E. et al. Diverse chemical scaffolds support direct inhibition of the membrane-bound O-acyltransferase porcupine. J. Biol. Chem. 287, 23246–23254 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ho, R., Papp, B., Hoffman, J.A., Merrill, B.J. & Plath, K. Stage-specific regulation of reprogramming to induced pluripotent stem cells by Wnt signaling and T cell factor proteins. Cell Rep. 3, 2113–2126 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ross, J. et al. A rare human syndrome provides genetic evidence that WNT signaling is required for reprogramming of fibroblasts to induced pluripotent stem cells. Cell Rep. 9, 1770–1780 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang, X. et al. The development of highly potent inhibitors for porcupine. J. Med. Chem. 56, 2700–2704 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cheng, D., Zhang, G., Han, D., Gao, W. & Pan, S. US patent publication US 101849 (2010).

  64. Proffitt, K.D. et al. Pharmacological inhibition of the Wnt acyltransferase PORCN prevents growth of WNT-driven mammary cancer. Cancer Res. 73, 502–507 (2013). Provides proof of concept for pharmacological targeting of porcupine by using the small-molecule inhibitor C59 in mouse mammary xenograft models.

    Article  CAS  PubMed  Google Scholar 

  65. Koo, B.K., van Es, J.H., van den Born, M. & Clevers, H. Porcupine inhibitor suppresses paracrine Wnt-driven growth of Rnf43;Znrf3-mutant neoplasia. Proc. Natl. Acad. Sci. USA 112, 7548–7550 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu, J. et al. Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974. Proc. Natl. Acad. Sci. USA 110, 20224–20229 (2013). Describes the identification of a small-molecule inhibitor of porcupine that shows efficacy and is well tolerated in rodent tumor models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jiang, X. et al. Inactivating mutations of RNF43 confer Wnt dependency in pancreatic ductal adenocarcinoma. Proc. Natl. Acad. Sci. USA 110, 12649–12654 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Madan, B. et al. Wnt addiction of genetically defined cancers reversed by PORCN inhibition. Oncogene doi:10.1038/onc.2015.280 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Gross, J.C., Chaudhary, V., Bartscherer, K. & Boutros, M. Active Wnt proteins are secreted on exosomes. Nat. Cell Biol. 14, 1036–1045 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Bänziger, C. et al. Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell 125, 509–522 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Mulligan, K.A. et al. Secreted Wingless-interacting molecule (Swim) promotes long-range signaling by maintaining Wingless solubility. Proc. Natl. Acad. Sci. USA 109, 370–377 (2012).

    Article  PubMed  Google Scholar 

  72. Kakugawa, S. et al. Notum deacylates Wnt proteins to suppress signalling activity. Nature 519, 187–192 (2015). Reports the first known extracellular protein deacylase that specifically targets Wnts, revealing a novel extracellular regulatory mechanism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang, X. et al. Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation. Dev. Cell 32, 719–730 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Panáková, D., Sprong, H., Marois, E., Thiele, C. & Eaton, S. Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature 435, 58–65 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Herr, P. & Basler, K. Porcupine-mediated lipidation is required for Wnt recognition by Wls. Dev. Biol. 361, 392–402 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Bartscherer, K., Pelte, N., Ingelfinger, D. & Boutros, M. Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell 125, 523–533 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Goodman, R.M. et al. Sprinter: a novel transmembrane protein required for Wg secretion and signaling. Development 133, 4901–4911 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Najdi, R. et al. A uniform human Wnt expression library reveals a shared secretory pathway and unique signaling activities. Differentiation 84, 203–213 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Coombs, G.S. et al. WLS-dependent secretion of WNT3A requires Ser209 acylation and vacuolar acidification. J. Cell Sci. 123, 3357–3367 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yu, J. et al. WLS retrograde transport to the endoplasmic reticulum during Wnt secretion. Dev. Cell 29, 277–291 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Port, F. & Basler, K. Wnt trafficking: new insights into Wnt maturation, secretion and spreading. Traffic 11, 1265–1271 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Aicart-Ramos, C., Valero, R.A. & Rodriguez-Crespo, I. Protein palmitoylation and subcellular trafficking. Biochim. Biophys. Acta 1808, 2981–2994 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Korkut, C. et al. Trans-synaptic transmission of vesicular Wnt signals through Evi/Wntless. Cell 139, 393–404 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Beckett, K. et al. Drosophila S2 cells secrete wingless on exosome-like vesicles but the wingless gradient forms independently of exosomes. Traffic 14, 82–96 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Naguib, A. et al. p53 mutations change phosphatidylinositol acyl chain composition. Cell Rep. 10, 8–19 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Okonechnikov, K., Golosova, O. & Fursov, M. UGENE team. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28, 1166–1167 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Notredame, C., Higgins, D.G. & Heringa, J. T-Coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302, 205–217 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Crooks, G.E., Hon, G., Chandonia, J.M. & Brenner, S.E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Leoyklang, P., Suphapeetiporn, K., Wananukul, S. & Shotelersuk, V. Three novel mutations in the PORCN gene underlying focal dermal hypoplasia. Clin. Genet. 73, 373–379 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Maas, S.M. et al. Phenotype and genotype in 17 patients with Goltz-Gorlin syndrome. J. Med. Genet. 46, 716–720 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Fernandes, P.H. et al. PORCN mutations and variants identified in patients with focal dermal hypoplasia through diagnostic gene sequencing. Genet. Test. Mol. Biomarkers 14, 709–713 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Nugent, T. & Jones, D.T. Detecting pore-lining regions in transmembrane protein sequences. BMC Bioinformatics 13, 169 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Omasits, U., Ahrens, C.H., Müller, S. & Wollscheid, B. Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics 30, 884–886 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Chang, C.Y., Sun, J. & Chang, T.-Y. Membrane-bound O-acyltransferases (MBOATs). Front. Biol. 6, 177–182 (2011).

    CAS  Google Scholar 

  96. Buglino, J.A. & Resh, M.D. Identification of conserved regions and residues within Hedgehog acyltransferase critical for palmitoylation of Sonic Hedgehog. PLoS One 5, e11195 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yang, J., Brown, M.S., Liang, G., Grishin, N.V. & Goldstein, J.L. Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone. Cell 132, 387–396 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Das, A., Davis, M.A. & Rudel, L.L. Identification of putative active site residues of ACAT enzymes. J. Lipid Res. 49, 1770–1781 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hardy, R.Y. & Resh, M.D. Identification of N-terminal residues of Sonic Hedgehog important for palmitoylation by Hedgehog acyltransferase. J. Biol. Chem. 287, 42881–42889 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami N Hannoush.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nile, A., Hannoush, R. Fatty acylation of Wnt proteins. Nat Chem Biol 12, 60–69 (2016). https://doi.org/10.1038/nchembio.2005

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2005

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer