Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrophilic activity-based RNA probes reveal a self-alkylating RNA for RNA labeling

Subjects

Abstract

Probes that form covalent bonds with RNA molecules on the basis of their chemical reactivity would advance our ability to study the transcriptome. We developed a set of electrophilic activity-based RNA probes designed to react with unusually nucleophilic RNAs. We used these probes to identify reactive genome-encoded RNAs, resulting in the discovery of a 42-nt catalytic RNA from an archaebacterium that reacts with a 2,3-disubstituted epoxide at N7 of a specific guanosine. Detailed characterization of the catalytic RNA revealed the structural requirements for reactivity. We developed this catalytic RNA into a general tool to selectively conjugate a small molecule to an RNA of interest. This strategy enabled up to 500-fold enrichment of target RNA from total mammalian RNA or from cell lysate. We demonstrated the utility of this approach by selectively capturing proteins in yeast cell lysate that bind the ASH1 mRNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electrophilic probes for the discovery of unusually nucleophilic RNA.
Figure 2: A catalytic RNA from the A. pernix genome that reacts with a disubstituted epoxide.
Figure 3: Epoxide substrate selectivity of the catalytic RNA.
Figure 4: Application of the epoxide-opening catalytic RNA to enrich RNAs of interest from total cellular RNA and to capture RNA-binding proteins.

Similar content being viewed by others

References

  1. Djebali, S. et al. Landscape of transcription in human cells. Nature 489, 101–108 (2012).

    Article  CAS  Google Scholar 

  2. Kowtoniuk, W.E. et al. A chemical screen for biological small molecule–RNA conjugates reveals CoA-linked RNA. Proc. Natl. Acad. Sci. USA 106, 7768–7773 (2009).

    Article  CAS  Google Scholar 

  3. Dumelin, C.E., Chen, Y., Leconte, A.M., Chen, Y.G. & Liu, D.R. Discovery and biological characterization of geranylated RNA in bacteria. Nat. Chem. Biol. 8, 913–919 (2012).

    Article  CAS  Google Scholar 

  4. Doudna, J.A. & Cech, T.R. The chemical repertoire of natural ribozymes. Nature 418, 222–228 (2002).

    Article  CAS  Google Scholar 

  5. Fedor, M.J. & Williamson, J.R. The catalytic diversity of RNAs. Nat. Rev. Mol. Cell Biol. 6, 399–412 (2005).

    Article  CAS  Google Scholar 

  6. Joyce, G.F. Forty years of in vitro evolution. Angew. Chem. Int. Ed. Engl. 46, 6420–6436 (2007).

    Article  CAS  Google Scholar 

  7. Cravatt, B.F., Wright, A.T. & Kozarich, J.W. Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu. Rev. Biochem. 77, 383–414 (2008).

    Article  CAS  Google Scholar 

  8. Sadaghiani, A.M., Verhelst, S.H. & Bogyo, M. Tagging and detection strategies for activity–based proteomics. Curr. Opin. Chem. Biol. 11, 20–28 (2007).

    Article  CAS  Google Scholar 

  9. Hinner, M.J. & Johnsson, K. How to obtain labeled proteins and what to do with them. Curr. Opin. Biotechnol. 21, 766–776 (2010).

    Article  CAS  Google Scholar 

  10. Jing, C. & Cornish, V.W. Chemical tags for labeling proteins inside living cells. Acc. Chem. Res. 44, 784–792 (2011).

    Article  CAS  Google Scholar 

  11. Low, J.T. & Weeks, K.M. SHAPE-directed RNA secondary structure prediction. Methods 52, 150–158 (2010).

    Article  CAS  Google Scholar 

  12. Baruah, H., Puthenveetil, S., Choi, Y.A., Shah, S. & Ting, A.Y. An engineered aryl azide ligase for site-specific mapping of protein–protein interactions through photo–cross–linking. Angew. Chem. Int. Ed. Engl. 47, 7018–7021 (2008).

    Article  CAS  Google Scholar 

  13. Rutkowska, A., Haering, C.H. & Schultz, C. A FlAsH–based cross-linker to study protein interactions in living cells. Angew. Chem. Int. Ed. Engl. 50, 12655–12658 (2011).

    Article  CAS  Google Scholar 

  14. Chidley, C., Haruki, H., Pedersen, M.G., Muller, E. & Johnsson, K. A yeast-based screen reveals that sulfasalazine inhibits tetrahydrobiopterin biosynthesis. Nat. Chem. Biol. 7, 375–383 (2011).

    Article  CAS  Google Scholar 

  15. Ameta, S. & Jäschke, A. An RNA catalyst that reacts with a mechanistic inhibitor of serine proteases. Chem. Sci. 4, 957–964 (2013).

    Article  CAS  Google Scholar 

  16. Sharma, A.K. et al. Fluorescent RNA labeling using self-alkylating ribozymes. ACS. Chem. Biol. 2014, 1680–1684 (2014).

    Article  Google Scholar 

  17. Armitage, B.A. Imaging of RNA in live cells. Curr. Opin. Chem. Biol. 15, 806–812 (2011).

    Article  CAS  Google Scholar 

  18. Baker, M. RNA imaging in situ. Nat. Methods 9, 787–790 (2012).

    Article  CAS  Google Scholar 

  19. Walker, S.C., Scott, F.H., Srisawat, C. & Engelke, D.R. RNA affinity tags for the rapid purification and investigation of RNAs and RNA-protein complexes. Methods Mol. Biol. 488, 23–40 (2008).

    Article  CAS  Google Scholar 

  20. McHugh, C.A., Russell, P. & Guttman, M. Methods for comprehensive experimental identification of RNA-protein interactions. Genome Biol. 15, 203–212 (2014).

    Article  Google Scholar 

  21. Doudna, J.A. & Lorsch, J.R. Ribozyme catalysis: not different, just worse. Nat. Struct. Mol. Biol. 12, 395–402 (2005).

    Article  CAS  Google Scholar 

  22. Lilley, D.M.J. & Eckstein, F. Ribozymes and RNA Catalysis (RSC Publishing: Cambridge, UK, 2008).

  23. Chen, Y.G., Kowtoniuk, W.E., Agarwal, I., Shen, Y. & Liu, D.R. LC/MS analysis of cellular RNA reveals NAD-linked RNA. Nat. Chem. Biol. 5, 879–881 (2009).

    Article  CAS  Google Scholar 

  24. Thomas, J.M. & Perrin, D.M. Active site labeling of G8 in the hairpin ribozyme: implications for structure and mechanism. J. Am. Chem. Soc. 128, 16540–16545 (2006).

    Article  CAS  Google Scholar 

  25. Weerapana, E., Simon, G.M. & Cravatt, B.F. Disparate proteome reactivity profiles of carbon electrophiles. Nat. Chem. Biol. 4, 405–407 (2008).

    Article  CAS  Google Scholar 

  26. Barglow, K.T. & Cravatt, B.F. Discovering disease-associated enzymes by proteome reactivity profiling. Chem. Biol. 11, 1523–1531 (2004).

    Article  CAS  Google Scholar 

  27. Simon, G.M. & Cravatt, B.F. Activity-based proteomics of enzyme superfamilies: serine hydrolases as a case study. J. Biol. Chem. 285, 11051–11055 (2010).

    Article  CAS  Google Scholar 

  28. Kawarabayasi, Y. et al. Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1. DNA Res. 6, 83–101 (1999).

    Article  CAS  Google Scholar 

  29. Lee, N., Bessho, Y., Wei, K., Szostak, J.W. & Suga, H. Ribozyme-catalyzed tRNA aminoacylation. Nat. Struct. Biol. 7, 28–33 (2000).

    Article  CAS  Google Scholar 

  30. Sengle, G. et al. Novel RNA catalysts for the Michael reaction. Chem. Biol. 8, 459–473 (2001).

    Article  CAS  Google Scholar 

  31. Fusz, S., Eisenführ, A., Srivatsan, S.G., Heckel, A. & Famulok, M. A ribozyme for the aldol reaction. Chem. Biol. 12, 941–950 (2005).

    Article  CAS  Google Scholar 

  32. Saran, D., Nickens, D.G. & Burke, D.H. A trans acting ribozyme that phosphorylates exogenous RNA. Biochemistry 44, 15007–15016 (2005).

    Article  CAS  Google Scholar 

  33. Boysen, G., Pachkowski, B.F., Nakamura, J. & Swenberg, J.A. The formation and biological significance of N7-guanine adducts. Mutat. Res. 678, 76–94 (2009).

    Article  CAS  Google Scholar 

  34. Hansen, M.R. & Hurley, L.H. Old drugs having modern friends in structural biology. Acc. Chem. Res. 29, 249–258 (1996).

    Article  CAS  Google Scholar 

  35. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

    Article  CAS  Google Scholar 

  36. Machanick, P. & Bailey, T.L. MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics 27, 1696–1697 (2011).

    Article  CAS  Google Scholar 

  37. Bao, G., Rhee, W.J. & Tsourkas, A. Fluorescent probes for live-cell RNA detection. Annu. Rev. Biomed. Eng. 11, 25–47 (2009).

    Article  CAS  Google Scholar 

  38. Jao, C.Y. & Salic, A. Exploring RNA transcription and turnover in vivo by using click chemistry. Proc. Natl. Acad. Sci. USA 105, 15779–15784 (2008).

    Article  CAS  Google Scholar 

  39. Trcek, T., Larson, D.R., Moldón, A., Query, C.C. & Singer, R.H. Single molecule mRNA decay measurements reveal promoter-regulated mRNA stability in yeast. Cell 147, 1484–1497 (2011).

    Article  CAS  Google Scholar 

  40. Rabani, M. et al. Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nat. Biotechnol. 29, 436–442 (2011).

    Article  CAS  Google Scholar 

  41. Cosma, M.P. Daughter-specific repression of Saccharomyces cerevisiae HO: Ash1 is the commander. EMBO Rep. 5, 953–957 (2004).

    Article  CAS  Google Scholar 

  42. Langer, P.R., Waldrop, A.A. & Ward, D.C. Enzymatic synthesis of biotin-labeled polynucleotides: novel nucleic acid affinity probes. Proc. Natl. Acad. Sci. USA 78, 6633–6637 (1981).

    Article  CAS  Google Scholar 

  43. Curtis, E.A. & Liu, D.R. Discovery of widespread GTP-binding motifs in genomic DNA and RNA. Chem. Biol. 20, 521–532 (2013).

    Article  CAS  Google Scholar 

  44. Tretyakova, N.Y., Sangaiah, R., Yen, T.Y. & Swenberg, J.A. Synthesis, characterization, and in vitro quantitation of N-7-guanine adducts of diepoxybutane. Chem. Res. Toxicol. 10, 779–785 (1997).

    Article  CAS  Google Scholar 

  45. Ponchon, L. & Dardel, F. Recombinant RNA technology: the tRNA scaffold. Nat. Methods 4, 571–576 (2007).

    Article  CAS  Google Scholar 

  46. Paul, C.P. et al. Localized expression of small RNA inhibitors in human cells. Mol. Ther. 7, 237–247 (2003).

    Article  CAS  Google Scholar 

  47. Paige, J.S., Wu, K.Y. & Jaffrey, S.R. RNA mimics of green fluorescent protein. Science 333, 642–646 (2011).

    Article  CAS  Google Scholar 

  48. Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature 425, 737–741 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health (NIH)/ National Institute of General Medical Sciences R01 GM065865 and the Howard Hughes Medical Institute. R.I.M. and S.M. were supported by a NIH National Research Service Award Postdoctoral Fellowship (F32GM099359 and F32GM101751). We thank L. Goff for assistance with bioinformatics analysis, D. Engelke (University of Michigan, Ann Arbor) for providing the 5S rRNA plasmid and E. Weerapana (Boston College) for providing the fluorophosphonate probe. We are also grateful to C. Dumelin, A. Leconte, L. McGregor, D. Thompson and D. Usanov for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

R.I.M. designed the research, prepared materials and performed experiments. J.P.G. and S.M. prepared materials and performed research. E.A.C. and W.I.L. prepared materials. D.R.L. designed and supervised the research. R.I.M. and D.R.L. wrote the manuscript.

Corresponding author

Correspondence to David R Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–15, Supplementary Tables 1 and 2 and Supplementary Note. (PDF 5739 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McDonald, R., Guilinger, J., Mukherji, S. et al. Electrophilic activity-based RNA probes reveal a self-alkylating RNA for RNA labeling. Nat Chem Biol 10, 1049–1054 (2014). https://doi.org/10.1038/nchembio.1655

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1655

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing