Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Systems-level antimicrobial drug and drug synergy discovery

Abstract

Here, we review the 'target-centric' genomic strategy to antimicrobial discovery and share our perspective on identification, validation and prioritization of potential antimicrobial drug targets in the context of emerging chemical biology, genomics and phenotypic screening strategies. We propose that coupling the dual processes of antimicrobial small-molecule screening and target identification in a whole-cell context is essential to empirically annotate 'druggable' targets and advance early stage antimicrobial discovery. We also advocate a systems-level approach to annotating synthetic-lethal genetic interactions comprehensively within yeast and bacteria models. The resulting genetic interaction networks provide a landscape to rationally predict and exploit drug synergy between cognate inhibitors. We posit that synergistic combination agents provide an important and largely unexploited strategy to 'repurpose' existing chemical space and simultaneously address issues of potency, spectrum, toxicity and drug resistance in early stages of antimicrobial drug discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Identifying bioactive antimicrobial compounds and linking them to their target with forward and reverse chemical-genetic approaches.
Figure 3: Interpreting chemical-genetic and genetic interaction profiles.
Figure 4: Genetic interactions are predictive of chemical-genetic and chemical-synergy interactions.

Similar content being viewed by others

References

  1. Boucher, H.W. et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis. 48, 1–12 (2009).

    PubMed  Google Scholar 

  2. Projan, S.J. Why is big Pharma getting out of antibacterial drug discovery? Curr. Opin. Microbiol. 6, 427–430 (2003).

    PubMed  Google Scholar 

  3. Projan, S.J. Whither antibacterial drug discovery? Drug Discov. Today 13, 279–280 (2008).

    PubMed  Google Scholar 

  4. Baltz, R.H. Marcel Faber Roundtable: is our antibiotic pipeline unproductive because of starvation, constipation or lack of inspiration? J. Ind. Microbiol. Biotechnol. 33, 507–513 (2006).

    CAS  PubMed  Google Scholar 

  5. Fischbach, M.A. & Walsh, C.T. Antibiotics for emerging pathogens. Science 325, 1089–1093 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Silver, L.L. Challenges of antibacterial discovery. Clin. Microbiol. Rev. 24, 71–109 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Livermore, D.M. Discovery research: the scientific challenge of finding new antibiotics. J. Antimicrob. Chemother. 66, 1941–1944 (2011).

    CAS  PubMed  Google Scholar 

  8. Payne, D.J., Gwynn, M.N., Holmes, D.J. & Pompliano, D.L. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov. 6, 29–40 (2007).

    CAS  PubMed  Google Scholar 

  9. Swinney, D.C. & Anthony, J. How were new medicines discovered? Nat. Rev. Drug Discov. 10, 507–519 (2011).

    CAS  PubMed  Google Scholar 

  10. Walsh, C.T. Antibiotics: Actions, Origins, Resistance (ASM Press, 2003).

    Google Scholar 

  11. Fera, M.T., La Camera, E. & De Sarro, A. New triazoles and echinocandins: mode of action, in vitro activity and mechanisms of resistance. Expert Rev. Anti Infect. Ther. 7, 981–998 (2009).

    CAS  PubMed  Google Scholar 

  12. Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002).

    CAS  PubMed  Google Scholar 

  13. Winzeler, E.A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).

    CAS  PubMed  Google Scholar 

  14. Gerdes, S.Y. et al. Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J. Bacteriol. 185, 5673–5684 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006–0008 (2006).

    PubMed  PubMed Central  Google Scholar 

  16. Akerley, B.J. et al. Systematic identification of essential genes by in vitro mariner mutagenesis. Proc. Natl. Acad. Sci. USA 95, 8927–8932 (1998).

    CAS  Google Scholar 

  17. Akerley, B.J. et al. A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae. Proc. Natl. Acad. Sci. USA 99, 966–971 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Jacobs, M.A. et al. Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 100, 14339–14344 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Liberati, N.T. et al. An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc. Natl. Acad. Sci. USA 103, 2833–2838 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Langridge, G.C. et al. Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants. Genome Res. 19, 2308–2316 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Forsyth, R.A. et al. A genome-wide strategy for the identification of essential genes in Staphylococcus aureus. Mol. Microbiol. 43, 1387–1400 (2002).

    CAS  PubMed  Google Scholar 

  22. Chaudhuri, R.R. et al. Comprehensive identification of essential Staphylococcus aureus genes using Transposon-Mediated Differential Hybridisation (TMDH). BMC Genomics 10, 291 (2009).

    PubMed  PubMed Central  Google Scholar 

  23. Bijlsma, J.J. et al. Development of genomic array footprinting for identification of conditionally essential genes in Streptococcus pneumoniae. Appl. Environ. Microbiol. 73, 1514–1524 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Sassetti, C.M., Boyd, D.H. & Rubin, E.J. Genes required for mycobacterial growth defined by high density mutagenesis. Mol. Microbiol. 48, 77–84 (2003).

    CAS  PubMed  Google Scholar 

  25. Kobayashi, K. et al. Essential Bacillus subtilis genes. Proc. Natl. Acad. Sci. USA 100, 4678–4683 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. de Berardinis, V. et al. A complete collection of single-gene deletion mutants of Acinetobacter baylyi ADP1. Mol. Syst. Biol. 4, 174 (2008).

    PubMed  PubMed Central  Google Scholar 

  27. Wu, T. et al. Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. Cell 121, 235–245 (2005).

    CAS  PubMed  Google Scholar 

  28. Thanbichler, M. & Shapiro, L. MipZ, a spatial regulator coordinating chromosome segregation with cell division in Caulobacter. Cell 126, 147–162 (2006).

    CAS  PubMed  Google Scholar 

  29. Paradis-Bleau, C. et al. Lipoprotein cofactors located in the outer membrane activate bacterial cell wall polymerases. Cell 143, 1110–1120 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Roemer, T. et al. Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery. Mol. Microbiol. 50, 167–181 (2003).

    CAS  PubMed  Google Scholar 

  31. Mnaimneh, S. et al. Exploration of essential gene functions via titratable promoter alleles. Cell 118, 31–44 (2004).

    CAS  PubMed  Google Scholar 

  32. Park, Y.N. & Morschhauser, J. Tetracycline-inducible gene expression and gene deletion in Candida albicans. Eukaryot. Cell 4, 1328–1342 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hu, W. et al. Essential gene identification and drug target prioritization in Aspergillus fumigatus. PLoS Pathog. 3, e24 (2007).

    PubMed  PubMed Central  Google Scholar 

  34. Becker, J.M. et al. Pathway analysis of Candida albicans survival and virulence determinants in a murine infection model. Proc. Natl. Acad. Sci. USA 107, 22044–22049 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Silhavy, T.J., Kahne, D. & Walker, S. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2, a000414 (2010).

    PubMed  PubMed Central  Google Scholar 

  36. Lomovskaya, O. & Bostian, K.A. Practical applications and feasibility of efflux pump inhibitors in the clinic—a vision for applied use. Biochem. Pharmacol. 71, 910–918 (2006).

    CAS  PubMed  Google Scholar 

  37. Nikaido, H. & Pages, J.M. Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria. FEMS Microbiol. Rev. 36, 340–363 (2012).

    CAS  PubMed  Google Scholar 

  38. Roemer, T. et al. Confronting the challenges of natural product-based antifungal discovery. Chem. Biol. 18, 148–164 (2011).

    CAS  PubMed  Google Scholar 

  39. Wallace, I.M. et al. Compound prioritization methods increase rates of chemical probe discovery in model organisms. Chem. Biol. 18, 1273–1283 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Chong, C.R. & Sullivan, D.J. Jr. New uses for old drugs. Nature 448, 645–646 (2007).

    CAS  PubMed  Google Scholar 

  41. Guiguemde, W.A. et al. Global phenotypic screening for antimalarials. Chem. Biol. 19, 116–129 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ho, C.H. et al. A molecular barcoded yeast ORF library enables mode-of-action analysis of bioactive compounds. Nat. Biotechnol. 27, 369–377 (2009).

    CAS  PubMed  Google Scholar 

  43. Serizawa, M. et al. Genomewide screening for novel genetic variations associated with ciprofloxacin resistance in Bacillus anthracis. Antimicrob. Agents Chemother. 54, 2787–2792 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Moffatt, J.H. et al. Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob. Agents Chemother. 54, 4971–4977 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Andries, K. et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307, 223–227 (2005).

    CAS  PubMed  Google Scholar 

  46. Stanley, S.A. et al. Identification of novel inhibitors of M. tuberculosis growth using whole cell based high-throughput screening. ACS Chem. Biol. 7, 1377–1384 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hartkoorn, R.C. et al. Towards a new tuberculosis drug: pyridomycin—nature's isoniazid. EMBO Mol. Med. 4, 1032–1042 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Grzegorzewicz, A.E. et al. Inhibition of mycolic acid transport across the Mycobacterium tuberculosis plasma membrane. Nat. Chem. Biol. 8, 334–341 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Nam, T.G. et al. A chemical genomic analysis of decoquinate, a Plasmodium falciparum cytochrome b inhibitor. ACS Chem. Biol. 6, 1214–1222 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Giaever, G. et al. Genomic profiling of drug sensitivities via induced haploinsufficiency. Nat. Genet. 21, 278–283 (1999).

    CAS  PubMed  Google Scholar 

  51. Giaever, G. et al. Chemogenomic profiling: identifying the functional interactions of small molecules in yeast. Proc. Natl. Acad. Sci. USA 101, 793–798 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lum, P.Y. et al. Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 116, 121–137 (2004).

    CAS  PubMed  Google Scholar 

  53. Parsons, A.B. et al. Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in yeast. Cell 126, 611–625 (2006).

    CAS  PubMed  Google Scholar 

  54. Xu, D. et al. Genome-wide fitness test and mechanism-of-action studies of inhibitory compounds in Candida albicans. PLoS Pathog. 3, e92 (2007).

    PubMed  PubMed Central  Google Scholar 

  55. Jiang, B. et al. PAP inhibitor with in vivo efficacy identified by Candida albicans genetic profiling of natural products. Chem. Biol. 15, 363–374 (2008).

    CAS  PubMed  Google Scholar 

  56. Donald, R.G. et al. A Staphylococcus aureus fitness test platform for mechanism-based profiling of antibacterial compounds. Chem. Biol. 16, 826–836 (2009).

    CAS  PubMed  Google Scholar 

  57. Xu, H.H. et al. Staphylococcus aureus TargetArray: comprehensive differential essential gene expression as a mechanistic tool to profile antibacterials. Antimicrob. Agents Chemother. 54, 3659–3670 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Shoemaker, D.D., Lashkari, D.A., Morris, D., Mittmann, M. & Davis, R.W. Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar-coding strategy. Nat. Genet. 14, 450–456 (1996).

    CAS  PubMed  Google Scholar 

  59. Oh, J. et al. Gene annotation and drug target discovery in Candida albicans with a tagged transposon mutant collection. PLoS Pathog. 6, e1001140 (2010).

    PubMed  PubMed Central  Google Scholar 

  60. Yan, Z. et al. Yeast Barcoders: a chemogenomic application of a universal donor-strain collection carrying bar-code identifiers. Nat. Methods 5, 719–725 (2008).

    CAS  PubMed  Google Scholar 

  61. Pierce, S.E., Davis, R.W., Nislow, C. & Giaever, G. Genome-wide analysis of barcoded Saccharomyces cerevisiae gene-deletion mutants in pooled cultures. Nat. Protoc. 2, 2958–2974 (2007).

    CAS  PubMed  Google Scholar 

  62. Hoon, S., St Onge, R.P., Giaever, G. & Nislow, C. Yeast chemical genomics and drug discovery: an update. Trends Pharmacol. Sci. 29, 499–504 (2008).

    CAS  PubMed  Google Scholar 

  63. Smith, A.M. et al. Quantitative phenotyping via deep barcode sequencing. Genome Res. 19, 1836–1842 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Barker, C.A., Farha, M.A. & Brown, E.D. Chemical genomic approaches to study model microbes. Chem. Biol. 17, 624–632 (2010).

    CAS  PubMed  Google Scholar 

  65. Hoon, S. et al. An integrated platform of genomic assays reveals small-molecule bioactivities. Nat. Chem. Biol. 4, 498–506 (2008); erratum 4, 632 (2008).

    CAS  PubMed  Google Scholar 

  66. Huber, J. et al. Chemical genetic identification of peptidoglycan inhibitors potentiating carbapenem activity against methicillin-resistant Staphylococcus aureus. Chem. Biol. 16, 837–848 (2009).

    CAS  PubMed  Google Scholar 

  67. Bills, G.F. et al. Discovery of the parnafungins, antifungal metabolites that inhibit mRNA polyadenylation, from the Fusarium larvarum complex and other Hypocrealean fungi. Mycologia 101, 449–472 (2009).

    CAS  PubMed  Google Scholar 

  68. Mani, R., St Onge, R.P., Hartman, J.L. IV, Giaever, G. & Roth, F.P. Defining genetic interaction. Proc. Natl. Acad. Sci. USA 105, 3461–3466 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Dixon, S.J., Costanzo, M., Baryshnikova, A., Andrews, B. & Boone, C. Systematic mapping of genetic interaction networks. Annu. Rev. Genet. 43, 601–625 (2009).

    CAS  PubMed  Google Scholar 

  70. Tong, A.H. et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364–2368 (2001).

    CAS  PubMed  Google Scholar 

  71. Tong, A.H. et al. Global mapping of the yeast genetic interaction network. Science 303, 808–813 (2004).

    CAS  PubMed  Google Scholar 

  72. Baryshnikova, A. et al. Quantitative analysis of fitness and genetic interactions in yeast on a genome scale. Nat. Methods 7, 1017–1024 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Costanzo, M. et al. The genetic landscape of a cell. Science 327, 425–431 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Parsons, A.B. et al. Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat. Biotechnol. 22, 62–69 (2004).

    CAS  PubMed  Google Scholar 

  75. Kartsonis, N.A., Nielsen, J. & Douglas, C.M. Caspofungin: the first in a new class of antifungal agents. Drug Resist. Updat. 6, 197–218 (2003).

    CAS  PubMed  Google Scholar 

  76. Cyert, M.S. Calcineurin signaling in Saccharomyces cerevisiae: how yeast go crazy in response to stress. Biochem. Biophys. Res. Commun. 311, 1143–1150 (2003).

    CAS  PubMed  Google Scholar 

  77. Lesage, G. et al. Analysis of β-1,3-glucan assembly in Saccharomyces cerevisiae using a synthetic interaction network and altered sensitivity to caspofungin. Genetics 167, 35–49 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Lesage, G. et al. An interactional network of genes involved in chitin synthesis in Saccharomyces cerevisiae. BMC Genet. 6, 8 (2005).

    PubMed  PubMed Central  Google Scholar 

  79. Osmond, B.C., Specht, C.A. & Robbins, P.W. Chitin synthase III: synthetic lethal mutants and 'stress related' chitin synthesis that bypasses the CSD3/CHS6 localization pathway. Proc. Natl. Acad. Sci. USA 96, 11206–11210 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Chaudhary, P.M., Tupe, S.G. & Deshpande, M.V. Chitin synthase inhibitors as antifungal agents. Mini Rev. Med. Chem. 13, 222–236 (2013).

    CAS  PubMed  Google Scholar 

  81. Sandovsky-Losica, H., Shwartzman, R., Lahat, Y. & Segal, E. Antifungal activity against Candida albicans of nikkomycin Z in combination with caspofungin, voriconazole or amphotericin B. J. Antimicrob. Chemother. 62, 635–637 (2008).

    CAS  PubMed  Google Scholar 

  82. Verwer, P.E., van Duijn, M.L., Tavakol, M., Bakker-Woudenberg, I.A. & van de Sande, W.W. Reshuffling of Aspergillus fumigatus cell wall components chitin and β-glucan under the influence of caspofungin or nikkomycin Z alone or in combination. Antimicrob. Agents Chemother. 56, 1595–1598 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Singh, S.D. et al. Hsp90 governs echinocandin resistance in the pathogenic yeast Candida albicans via calcineurin. PLoS Pathog. 5, e1000532 (2009).

    PubMed  PubMed Central  Google Scholar 

  84. Steinbach, W.J. et al. In vitro interactions between antifungals and immunosuppressants against Aspergillus fumigatus isolates from transplant and nontransplant patients. Antimicrob. Agents Chemother. 48, 4922–4925 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Del Poeta, M., Cruz, M.C., Cardenas, M.E., Perfect, J.R. & Heitman, J. Synergistic antifungal activities of bafilomycin A(1), fluconazole, and the pneumocandin MK-0991/caspofungin acetate (L-743,873) with calcineurin inhibitors FK506 and L-685,818 against Cryptococcus neoformans. Antimicrob. Agents Chemother. 44, 739–746 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Tamae, C. et al. Determination of antibiotic hypersensitivity among 4,000 single-gene-knockout mutants of Escherichia coli. J. Bacteriol. 190, 5981–5988 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Girgis, H.S., Hottes, A.K. & Tavazoie, S. Genetic architecture of intrinsic antibiotic susceptibility. PLoS ONE 4, e5629 (2009).

    PubMed  PubMed Central  Google Scholar 

  88. Liu, A. et al. Antibiotic sensitivity profiles determined with an Escherichia coli gene knockout collection: generating an antibiotic bar code. Antimicrob. Agents Chemother. 54, 1393–1403 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Nichols, R.J. et al. Phenotypic landscape of a bacterial cell. Cell 144, 143–156 (2011).

    CAS  PubMed  Google Scholar 

  90. Flores, A.R., Parsons, L.M. & Pavelka, M.S. Jr. Characterization of novel Mycobacterium tuberculosis and Mycobacterium smegmatis mutants hypersusceptible to β-lactam antibiotics. J. Bacteriol. 187, 1892–1900 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Fajardo, A. et al. The neglected intrinsic resistome of bacterial pathogens. PLoS One 3, e1619 (2008).

    PubMed  PubMed Central  Google Scholar 

  92. Gomez, M.J. & Neyfakh, A.A. Genes involved in intrinsic antibiotic resistance of Acinetobacter baylyi. Antimicrob. Agents Chemother. 50, 3562–3567 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Lee, S.H. et al. Antagonism of chemical genetic interaction networks resensitize MRSA to β-lactam antibiotics. Chem. Biol. 18, 1379–1389 (2011).

    CAS  PubMed  Google Scholar 

  94. Münch, D. et al. Identification and in vitro analysis of the GatD/MurT enzyme-complex catalyzing lipid II amidation in Staphylococcus aureus. PLoS Pathog. 8, e1002509 (2012).

    PubMed  PubMed Central  Google Scholar 

  95. Meredith, T.C., Wang, H., Beaulieu, P., Grundling, A. & Roemer, T. Harnessing the power of transposon mutagenesis for antibacterial target identification and evaluation. Mob. Genet. Elements 2, 171–178 (2012).

    PubMed  PubMed Central  Google Scholar 

  96. Therien, A.G. et al. Broadening the spectrum of β-lactam antibiotics through inhibition of signal peptidase type I. Antimicrob. Agents Chemother. 56, 4662–4670 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Tan, C.M. et al. Restoring methicillin-resistant Staphylococcus aureus susceptibility to β-lactam antibiotics. Sci. Transl. Med. 4, 126ra35 (2012).

    PubMed  Google Scholar 

  98. Haydon, D.J. et al. An inhibitor of FtsZ with potent and selective anti-staphylococcal activity. Science 321, 1673–1675 (2008).

    CAS  PubMed  Google Scholar 

  99. Fukumoto, A. et al. Cyslabdan, a new potentiator of imipenem activity against methicillin-resistant Staphylococcus aureus, produced by Streptomyces sp. K04–0144. II. Biological activities. J. Antibiot. (Tokyo) 61, 7–10 (2008).

    CAS  Google Scholar 

  100. Farha, M.A. et al. Inhibition of WTA synthesis blocks the cooperative action of PBPs and sensitizes MRSA to β-lactams. ACS Chem. Biol. 8, 226–233 (2013).

    CAS  PubMed  Google Scholar 

  101. Borisy, A.A. et al. Systematic discovery of multicomponent therapeutics. Proc. Natl. Acad. Sci. USA 100, 7977–7982 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Kristiansen, J.E. et al. Reversal of resistance in microorganisms by help of non-antibiotics. J. Antimicrob. Chemother. 59, 1271–1279 (2007).

    CAS  PubMed  Google Scholar 

  103. Ejim, L. et al. Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy. Nat. Chem. Biol. 7, 348–350 (2011).

    CAS  PubMed  Google Scholar 

  104. Kalan, L. & Wright, G.D. Antibiotic adjuvants: multicomponent anti-infective strategies. Expert Rev. Mol. Med. 13, e5 (2011).

    PubMed  Google Scholar 

  105. Cowen, L.E. et al. Harnessing Hsp90 function as a powerful, broadly effective therapeutic strategy for fungal infectious disease. Proc. Natl. Acad. Sci. USA 106, 2818–2823 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Shapiro, R.S., Robbins, N. & Cowen, L.E. Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol. Mol. Biol. Rev. 75, 213–267 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Cokol, M. et al. Systematic exploration of synergistic drug pairs. Mol. Syst. Biol. 7, 544 (2011).

    PubMed  PubMed Central  Google Scholar 

  108. Severyn, B. et al. Parsimonious discovery of synergistic drug combinations. ACS Chem. Biol. 6, 1391–1398 (2011).

    CAS  PubMed  Google Scholar 

  109. Drawz, S.M. & Bonomo, R.A. Three decades of β-lactamase inhibitors. Clin. Microbiol. Rev. 23, 160–201 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Ostrosky-Zeichner, L., Casadevall, A., Galgiani, J.N., Odds, F.C. & Rex, J.H. An insight into the antifungal pipeline: selected new molecules and beyond. Nat. Rev. Drug Discov. 9, 719–727 (2010).

    CAS  PubMed  Google Scholar 

  111. Wright, G.D. The antibiotic resistome: the nexus of chemical and genetic diversity. Nat. Rev. Microbiol. 5, 175–186 (2007).

    CAS  PubMed  Google Scholar 

  112. Wright, G.D. The antibiotic resistome. Expert Opin. Drug. Discov. 5, 779–788 (2010).

    CAS  PubMed  Google Scholar 

  113. Feng, Y. et al. Evolution and pathogenesis of Staphylococcus aureus: lessons learned from genotyping and comparative genomics. FEMS Microbiol. Rev. 32, 23–37 (2008).

    CAS  PubMed  Google Scholar 

  114. Pace, N.R., Sapp, J. & Goldenfeld, N. Phylogeny and beyond: scientific, historical, and conceptual significance of the first tree of life. Proc. Natl. Acad. Sci. USA 109, 1011–1018 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Gelperin, D.M. et al. Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. Genes Dev. 19, 2816–2826 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Nakayama, H. et al. Tetracycline-regulatable system to tightly control gene expression in the pathogenic fungus Candida albicans. Infect. Immun. 68, 6712–6719 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Nakayama, H., Nakayama, N., Arisawa, M. & Aoki, Y. In vitro and in vivo effects of 14α-demethylase (ERG11) depletion in Candida glabrata. Antimicrob. Agents Chemother. 45, 3037–3045 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Nakayama, H., Izuta, M., Nakayama, N., Arisawa, M. & Aoki, Y. Depletion of the squalene synthase (ERG9) gene does not impair growth of Candida glabrata in mice. Antimicrob. Agents Chemother. 44, 2411–2418 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Balemans, W. et al. Essentiality of FASII pathway for Staphylococcus aureus. Nature 463, E3, discussion E4 (2010).

    CAS  PubMed  Google Scholar 

  120. Brinster, S. et al. Type II fatty acid synthesis is not a suitable antibiotic target for Gram-positive pathogens. Nature 458, 83–86 (2009).

    CAS  PubMed  Google Scholar 

  121. Sanglard, D. Resistance of human fungal pathogens to antifungal drugs. Curr. Opin. Microbiol. 5, 379–385 (2002).

    CAS  PubMed  Google Scholar 

  122. Amsterdam, D. Susceptibility testing of antimicrobials in liquid media. in Antibiotics in Laboratory Medicine (ed. Lorian, V.) 89–93 (Lippincott Williams and Wilkins, Philadelphia, 2005).

    Google Scholar 

  123. Odds, F.C. Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother. 52, 1 (2003).

    CAS  PubMed  Google Scholar 

  124. Lehár, J. et al. Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat. Biotechnol. 27, 659–666 (2009).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Costanzo, J. Piotrowski and S. Li for contributions to this manuscript. This work was supported by a grant from the Canadian Institutes of Health Research (MOP-57830) to C.B.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Terry Roemer or Charles Boone.

Ethics declarations

Competing interests

Terry Roemer is an employee of Merck, as stated in the affiliations, and potentially owns stock and/or holds stock in the company.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roemer, T., Boone, C. Systems-level antimicrobial drug and drug synergy discovery. Nat Chem Biol 9, 222–231 (2013). https://doi.org/10.1038/nchembio.1205

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1205

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research