Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Discovery of an allosteric mechanism for the regulation of HCV NS3 protein function

Abstract

Here we report a highly conserved new binding site located at the interface between the protease and helicase domains of the hepatitis C virus (HCV) NS3 protein. Using a chemical lead, identified by fragment screening and structure-guided design, we demonstrate that this site has a regulatory function on the protease activity via an allosteric mechanism. We propose that compounds binding at this allosteric site inhibit the function of the NS3 protein by stabilizing an inactive conformation and thus represent a new class of direct-acting antiviral agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of the full-length NS3–NS4a protein.
Figure 2: Cocrystal structures of fragment hits.
Figure 3: Protein-ligand co-crystal structures of compounds 35, which were generated using structure-guided optimization.
Figure 4: Proposed mode of action of allosteric inhibitors.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Reed, K.E. & Rice, C.M. Overview of hepatitis C virus genome structure, polyprotein processing and protein properties. Curr. Top. Microbiol. Immunol. 242, 55–84 (2000).

    CAS  PubMed  Google Scholar 

  2. Bartenschlager, R. & Lohmann, V. Replication of hepatitis C virus. J. Gen. Virol. 81, 1631–1648 (2000).

    Article  CAS  Google Scholar 

  3. Morgenstern, K.A. et al. Polynucleotide modulation of the protease, nucleoside triphosphatase, and helicase activities of the hepatitis C virus NS3–4A complex isolated from transfected COS cells. J. Virol. 71, 3767–3775 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Beran, R.K. & Pyle, A.M. Hepatitis C viral NS3–4a protease activity is enhanced by the NS3 helicase. J. Biol. Chem. 283, 29929–29937 (2008).

    Article  CAS  Google Scholar 

  5. Beran, R.K., Serebrov, V. & Pyle, A.M. The serine protease domain of hepatitis C viral NS3 activates RNA helicase activity by promoting the binding of RNA substrate. J. Biol. Chem. 282, 34913–34920 (2007).

    Article  CAS  Google Scholar 

  6. Rajagopal, V., Gurjar, M., Levin, M.K. & Patel, S.S. The protease domain increases the translocation stepping efficiency of the hepatitis C virus NS3–4A helicase. J. Biol. Chem. 285, 17821–17832 (2010).

    Article  CAS  Google Scholar 

  7. Hopkins, A.L. et al. Complexes of HIV-1 reverse transcriptase with inhibitors of the HEPT series reveal conformational changes relevant to the design of potent non-nucleoside inhibitors. J. Med. Chem. 39, 1589–1600 (1996).

    Article  CAS  Google Scholar 

  8. Kessl, J.J. et al. An allosteric mechanism for inhibiting HIV-1 integrase with a small molecule. Mol. Pharmacol. 76, 824–832 (2009).

    Article  CAS  Google Scholar 

  9. Walker, M.A. New approaches for inhibiting HIV integrase: a journey beyond the active site. Curr. Opin. Investig. Drugs 10, 129–136 (2009).

    CAS  PubMed  Google Scholar 

  10. Chen, K.X. & Njoroge, F.G. A review of HCV protease inhibitors. Curr. Opin. Investig. Drugs 10, 821–837 (2009).

    CAS  PubMed  Google Scholar 

  11. Lamarre, D. et al. An NS3 protease inhibitor with antiviral effects in humans infected with hepatitis C virus. Nature 426, 186–189 (2003).

    Article  CAS  Google Scholar 

  12. Thibeault, D. et al. Use of the fused NS4a peptide-NS3 protease domain to study the importance of the helicase domain for protease inhibitor binding to hepatitis C virus NS3–4a. Biochemistry 48, 744–753 (2009).

    Article  CAS  Google Scholar 

  13. Belon, C.A. & Frick, D.N. Helicase inhibitors as specifically targeted antiviral therapy for hepatitis C. Future Virol. 4, 277–293 (2009).

    Article  CAS  Google Scholar 

  14. Frick, D.N. The hepatitis C virus NS3 protein: a model RNA helicase and potential drug target. Curr. Issues Mol. Biol. 9, 1–20 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Raney, K.D., Sharma, S.D., Moustafa, I.M., Cameron, C.E. & Hepatitis, C. Virus non-structural protein 3 (HCV NS3): a multifunctional antiviral target. J. Biol. Chem. 285, 22725–22731 (2010).

    Article  CAS  Google Scholar 

  16. Chappell, K.J. et al. West Nile virus NS2B/NS3 protease as an antiviral target. Curr. Med. Chem. 15, 2771–2784 (2008).

    Article  CAS  Google Scholar 

  17. Chernov, A.V. et al. The two-component NS2B–NS3 proteinase represses DNA unwinding activity of the West Nile virus NS3 helicase. J. Biol. Chem. 283, 17270–17278 (2008).

    Article  CAS  Google Scholar 

  18. Murray, C.W. & Blundell, T. Structural biology in fragment-based drug design. Curr. Opin. Struct. Biol. 20, 497–507 (2010).

    Article  CAS  Google Scholar 

  19. Murray, C.W. & Rees, D.C. The rise of fragment-based drug discovery. Nat. Chem. 1, 187–192 (2009).

    Article  CAS  Google Scholar 

  20. Rhodes, D.I. et al. Structural basis for a new mechanism of inhibition of HIV-1 integrase identified by fragment screening and structure-based design. Antivir. Chem. Chemother. 21, 155–168 (2011).

    Article  CAS  Google Scholar 

  21. Perryman, A.L. et al. Fragment-based screen against HIV protease. Chem. Biol. Drug Des. 75, 257–268 (2010).

    Article  CAS  Google Scholar 

  22. Krimm, I., Lancelin, J.-M. & Praly, J.-P. Bindingevaluation of fragment-based scaffolds for probing allosteric enzymes. J. Med. Chem. 55, 1287–1295 (2012).

    Article  CAS  Google Scholar 

  23. Maurer, T. et al. Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity. Proc. Natl. Acad. Sci. USA 109, 5299–5304 (2012).

    Article  CAS  Google Scholar 

  24. Pommier, Y. & Marchand, C. Interfacial inhibitors: targeting macromolecular complexes. Nat. Rev. Drug Discov. 11, 25–36 (2012).

    Article  CAS  Google Scholar 

  25. Yao, N., Reichert, P., Taremi, S.S., Prosise, W.W. & Weber, P.C. Molecular views of viral polyprotein processing revealed by the crystal structure of the hepatitis C virus bifunctional protease–helicase. Structure 7, 1353–1363 (1999).

    Article  CAS  Google Scholar 

  26. Lohmann, V. et al. Replication of subgenomic hepatitis C virus RNA in a hepatoma cell line. Science 285, 110–113 (1999).

    Article  CAS  Google Scholar 

  27. Bartenschlager, R. Hepatitis C replicons: potential role for drug development. Nat. Rev. Drug Discov. 1, 911–916 (2002).

    Article  CAS  Google Scholar 

  28. De Clercq, E. The design of drugs for HIV and HCV. Nat. Rev. Drug Discov. 6, 1001–1018 (2007).

    Article  CAS  Google Scholar 

  29. Richman, D.D. The impact of drug resistance on the effectiveness of chemotherapy for chronic hepatitis B. Hepatology 32, 866–867 (2000).

    Article  CAS  Google Scholar 

  30. Kuiken, C., Yusim, K., Boykin, L. & Richardson, R. The Los Alamos HCV sequence database. Bioinformatics 21, 379–384 (2005).

    Article  CAS  Google Scholar 

  31. Ding, S.C., Kohlway, A.S. & Pyle, A.M. Unmasking the active helicase conformation of nonstructural protein 3 from hepatitis C virus. J. Virol. 85, 4343–4353 (2011).

    Article  CAS  Google Scholar 

  32. Luo, D. et al. Flexibility between the protease and helicase domains of the Dengue virus NS3 protein conferred by the linker region and its functional implications. J. Biol. Chem. 285, 18817–18827 (2010).

    Article  CAS  Google Scholar 

  33. Wang, W. et al. Conserved C-terminal threonine of hepatitis C virus NS3 regulates autoproteolysis and prevents product inhibition. J. Virol. 78, 700–709 (2004).

    Article  CAS  Google Scholar 

  34. Wölk, B. et al. Subcellular localization, stability, and trans-cleavage competence of the hepatitis C virus NS3–NS4A complex expressed in tetracycline-regulated cell lines. J. Virol. 74, 2293–2304 (2000).

    Article  Google Scholar 

  35. Brass, V. et al. Structural determinants for membrane association and dynamic organization of the hepatitis C virus NS3–4A complex. Proc. Natl. Acad. Sci. USA 105, 14545–14550 (2008).

    Article  CAS  Google Scholar 

  36. Horner, S.M., Park, H.S. & Gale, M. Jr. Control of innate immune signaling and membrane targeting by the hepatitis C virus NS3/4A protease are governed by the NS3 helix α0. J. Virol. 86, 3112–3120 (2012).

    Article  CAS  Google Scholar 

  37. Vonrhein, C. et al. Data processing and analysis with the autoPROC toolbox. Acta Crystallogr. D Biol. Crystallogr. 67, 293–302 (2011).

    Article  CAS  Google Scholar 

  38. Leslie, A.G.W. & Powell, H.R. Processing diffraction data with Mosflm. in Evolving Methods for Macromolecular Crystallography 245, 41–51 (2007).

    Article  Google Scholar 

  39. Kabsch, W. Integration, scaling, spacegroup-assignment and post-refinement. Acta Crystallogr. D Biol. Crystallogr. 66, 133–144 (2010).

    Article  CAS  Google Scholar 

  40. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  41. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  42. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  43. Bricogne, G. et al. BUSTER version 1.11.2. (Global Phasing Ltd., 2011).

  44. Mooij, W.T.M. et al. Automated protein-ligand crystallography for structure-based drug design. ChemMedChem 1, 827–838 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the contributions of M. Vinkovic, H. Angove, G.E. Besong, F. Holding, E. Chiarparin and M.L.Verdonk. We thank C. Cartwright for producing figures. X-ray data were collected at the European Synchrotron Radiation Facility and at the Diamond Lightsource. Sedimentation velocity experiments were performed by C. May and T. Laue at the Center to Advance Molecular Interaction Science at the University of New Hampshire. This research was supported by grant 087738 from the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Contributions

S.M.S.-B. performed construct design and expression, protein purification, characterization and crystallization. G.C., A.J.W., M.G.C., S.D.H. and C.W.M. modeled and designed the compounds. A.J.W., M.G.C. and S.D.H. synthesized and characterized the compounds. J.C. performed ITC experiments. B.G. executed the western blot analysis and subgenomic replicon experiments and generated and characterized the resistance mutations. P.P. and P.A.W. crystallized the protein, collected the X-ray data and solved the crystal structures. S.J.R. and C.J.R. performed bioassay experiments. S.M.S.-B. and H.J. conceived the project. S.M.S.-B., A.J.W. and H.J. wrote the manuscript and managed the project. S.M.S-B., J.C., C.W.M. and H.J. conceived the model and designed the experiments.

Corresponding author

Correspondence to Harren Jhoti.

Ethics declarations

Competing interests

All authors are employees of Astex Pharmaceuticals and own shares in the company.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 919 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saalau-Bethell, S., Woodhead, A., Chessari, G. et al. Discovery of an allosteric mechanism for the regulation of HCV NS3 protein function. Nat Chem Biol 8, 920–925 (2012). https://doi.org/10.1038/nchembio.1081

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1081

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing