Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Peptide tessellation yields micrometre-scale collagen triple helices

Abstract

Sticky-ended DNA duplexes can associate spontaneously into long double helices; however, such self-assembly is much less developed with proteins. Collagen is the most prevalent component of the extracellular matrix and a common clinical biomaterial. As for natural DNA, the ~103-residue triple helices (~300 nm) of natural collagen are recalcitrant to chemical synthesis. Here we show how the self-assembly of short collagen-mimetic peptides (CMPs) can enable the fabrication of synthetic collagen triple helices that are nearly a micrometre in length. Inspired by the mathematics of tessellations, we derive rules for the design of single CMPs that self-assemble into long triple helices with perfect symmetry. Sticky ends thus created are uniform across the assembly and drive its growth. Enacting this design yields individual triple helices that, in length, match or exceed those in natural collagen and are remarkably thermostable, despite the absence of higher-order association. The symmetric assembly of CMPs provides an enabling platform for the development of advanced materials for medicine and nanotechnology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of symmetric CMP self-assemblies.
Figure 2: Characterization of 4sb-derived CMP self-assemblies.
Figure 3: Perturbing the strand-association landscape abolishes assembly.
Figure 4: Benefits of symmetric assembly.

Similar content being viewed by others

References

  1. Cohen, S. N., Chang, A. C. Y., Boyer, H. W. & Helling, R. B. Construction of biologically functional bacterial plasmids in-vitro. Proc. Natl Acad. Sci. USA 70, 3240–3244 (1973).

    Article  CAS  Google Scholar 

  2. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods 6, 343–345 (2009).

    Article  CAS  Google Scholar 

  3. Khalil, A. S. & Collins, J. J. Synthetic biology: applications come of age. Nature Rev. Genet. 11, 367–379 (2010).

    Article  CAS  Google Scholar 

  4. Seeman, N. C. Nanomaterials based on DNA. Annu. Rev. Biochem. 79, 65–87 (2010).

    Article  CAS  Google Scholar 

  5. Zimenkov, Y. et al. Rational design of a reversible pH-responsive switch for peptide self-assembly. J. Am. Chem. Soc. 128, 6770–6771 (2006).

    Article  CAS  Google Scholar 

  6. Banwell, E. F. et al. Rational design and application of responsive α-helical peptide hydrogels. Nature Mater. 8, 596–600 (2009).

    Article  CAS  Google Scholar 

  7. Brinckmann, J. Collagens at a glance. Top. Curr. Chem. 247, 1–6 (2005).

    Article  CAS  Google Scholar 

  8. Meyers, M. A., Chen, P.-Y., Lin, A. Y.-M. & Seki, Y. Biological materials: structure and mechanical properties. Prog. Mater. Sci. 53, 1–206 (2008).

    Article  CAS  Google Scholar 

  9. Chattopadhyay, S. & Raines, R. T. Collagen-based biomaterials for wound healing. Biopolymers 101, 821–833 (2014).

    Article  CAS  Google Scholar 

  10. Ricard-Blum, S. The collagen family. Cold Spring Harb. Perspect. Biol. 3, a004978 (2011).

    Article  Google Scholar 

  11. Fields, G. B. Synthesis and biological applications of collagen-model triple-helical peptides. Org. Biomol. Chem. 8, 1237–1258 (2010).

    Article  CAS  Google Scholar 

  12. Shoulders, M. D. & Raines, R. T. Collagen structure and stability. Annu. Rev. Biochem. 78, 929–958 (2009).

    Article  CAS  Google Scholar 

  13. Siebler, C., Erdmann, R. S. & Wennemers, H. From azidoproline to functionalizable collagen. Chimia 67, 891–895 (2013).

    Article  CAS  Google Scholar 

  14. Kotch, F. W. & Raines, R. T. Self-assembly of synthetic collagen triple helices. Proc. Natl Acad. Sci. USA 103, 3028–3033 (2006).

    Article  CAS  Google Scholar 

  15. Rele, S. et al. D-Periodic collagen-mimetic microfibers. J. Am. Chem. Soc. 129, 14780–14787 (2007).

    Article  CAS  Google Scholar 

  16. Gottlieb, D., Morin, S. A., Jin, S. & Raines, R. T. Self-assembled collagen-like peptide fibers as templates for metallic nanowires. J. Mater. Chem. 18, 3865–3870 (2008).

    Article  CAS  Google Scholar 

  17. Cejas, M. A. et al. Thrombogenic collagen-mimetic peptides: self-assembly of triple helix-based fibrils driven by hydrophobic interactions. Proc. Natl Acad. Sci. USA 105, 8513–8518 (2008).

    Article  CAS  Google Scholar 

  18. Yamazaki, C. M. et al. A collagen-mimetic triple helical supramolecule that evokes integrin-dependent cell responses. Biomaterials 31, 1925–1934 (2010).

    Article  CAS  Google Scholar 

  19. O'Leary, L. E. R., Fallas, J. A., Bakota, E. L., Kang, M. K. & Hartgerink, J. D. Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel. Nature Chem. 3, 821–828 (2011).

    Article  CAS  Google Scholar 

  20. Xu, F. et al. Compositional control of higher order assembly using synthetic collagen peptides. J. Am. Chem. Soc. 134, 47–50 (2012).

    Article  CAS  Google Scholar 

  21. Sarkar, B., O'Leary, L. E. R. & Hartgerink, J. D. Self-assembly of fiber-forming collagen mimetic peptides controlled by triple-helical nucleation. J. Am. Chem. Soc. 136, 14417–14424 (2014).

    Article  CAS  Google Scholar 

  22. Persikov, A. V., Ramshaw, J. A. M. & Brodsky, B. Prediction of collagen stability from amino acid sequence. J. Biol. Chem. 280, 19343–19349 (2005).

    Article  CAS  Google Scholar 

  23. Fallas, J. A., Gauba, V. & Hartgerink, J. D. Solution structure of an ABC collagen heterotrimer reveals a single-register helix stabilized by electrostatic interactions. J. Biol. Chem. 284, 26851–26859 (2009).

    Article  CAS  Google Scholar 

  24. Coxeter, H. S. M. Crystal symmetry and its generalizations. Trans. R. Soc. Can. 51, 1–13 (1957).

    Google Scholar 

  25. Emmer, M. & Schattschneider, D. M. C. Escher's Legacy: A Centennial Celebration (Springer, 2003).

    Google Scholar 

  26. Crick, F. H. C. & Watson, J. D. Structure of small viruses. Nature 177, 473–475 (1956).

    Article  CAS  Google Scholar 

  27. Padilla, J. E., Colovos, C. & Yeates, T. O. Nanohedra: using symmetry to design self assembling protein cages, layers, crystals, and filaments. Proc. Natl Acad. Sci. USA 98, 2217–2221 (2001).

    Article  CAS  Google Scholar 

  28. Tanrikulu, I. C. & Raines, R. T. Optimal interstrand bridges for collagen-like biomaterials. J. Am. Chem. Soc. 136, 13490–13493 (2014).

    Article  CAS  Google Scholar 

  29. Gauba, V. & Hartgerink, J. D. Surprisingly high stability of collagen ABC heterotrimer: evaluation of side chain charge pairs. J. Am. Chem. Soc. 129, 15034–15041 (2007).

    Article  CAS  Google Scholar 

  30. Smulders, M. M. J. et al. How to distinguish isodesmic from cooperative supramolecular polymerisation. Chem. Eur. J. 16, 362–367 (2010).

    Article  CAS  Google Scholar 

  31. Gelman, R. A., Williams, B. R. & Piez, K. A. Collagen fibril formation: evidence for a multistep process. J. Biol. Chem. 254, 180–186 (1979).

    CAS  PubMed  Google Scholar 

  32. Bai, H. Y., Xu, K., Xu, Y. J. & Matsui, H. Fabrication of Au nanowires of uniform length and diameter using a monodisperse and rigid biomolecular template: collagen-like triple helix. Angew. Chem. Int. Ed. 46, 3319–3322 (2007).

    Article  CAS  Google Scholar 

  33. Persikov, A. V., Ramshaw, J. A., Kirkpatrick, A. & Brodsky, B. Amino acid propensities for the collagen triple-helix. Biochemistry 39, 14960–14967 (2000).

    Article  CAS  Google Scholar 

  34. Chen, Y.-S., Chen, C.-C. & Horng, J.-C. Thermodynamic and kinetic consequences of substituting glycine at different positions in a Pro-Hyp-Gly repeat collagen model peptide. Biopolymers 96, 60–68 (2011).

    Article  CAS  Google Scholar 

  35. Jiang, T., Xu, C., Zuo, X. & Conticello, V. P. Structurally homogeneous nanosheets from self-assembly of a collagen-mimetic peptide. Angew. Chem. Int. Ed. 53, 8367–8371 (2014).

    Article  CAS  Google Scholar 

  36. McGuinness, K., Khan, I. J. & Nanda, V. Morphological diversity and polymorphism of self-assembling collagen peptides controlled by length of hydrophobic domains. ACS Nano 8, 12514–12523 (2014).

    Article  CAS  Google Scholar 

  37. Wess, T. J. Collagen fibril form and function. Adv. Protein Chem. 70, 341–374 (2005).

    Article  CAS  Google Scholar 

  38. Rad-Malekshahi, M., Lempsink, L., Amidi, M., Hennink, W. E. & Mastrobattista, E. Biomedical applications of self-assembling peptides. Bioconjugate Chem. 27, 3–18 (2016).

    Article  CAS  Google Scholar 

  39. Kaur, P. et al. Three-dimensional directed self-assembly of peptide nanowires into micrometer-sized crystalline cubes with nanoparticle joints. Angew. Chem. Int. Ed. 49, 8375–8378 (2010).

    Article  CAS  Google Scholar 

  40. Durchschlag, H. & Zipper, P. Calculation of the partial volume of organic compounds and polymers. Ultracentrifugation 94, 20–39 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. J. Ellison, B. M. Hoover, R. Biswas and S. Chattopadhyay for help with solution- and solid-phase peptide synthesis, S. A. Morin for help with nanocharacterization, M. D. Shoulders, F. W. Kotch and E. Emrah for discussions on the CMP assembly and R. W. Newberry for reviewing the manuscript. This study would not have been possible without expert advice and assistance from M. D. Boersma and N. Porcaro (UW Biotechnology Center) and from D. R. McCaslin (UW BIF). A.F. and S.J. were supported by Grant DMR-0832760 (National Science Foundation). This work was supported by Grant R01 AR044276 (National Institutes of Health).

Author information

Authors and Affiliations

Authors

Contributions

I.C.T and R.T.R. conceived the project and planned the experiments. I.C.T. designed, synthesized and characterized the peptides in solution, and computed their association landscapes. A.F. imaged the peptide assemblies. All the authors analysed the data. I.C.T. and R.T.R. wrote the paper. All the authors proofread, commented on and approved the manuscript.

Corresponding author

Correspondence to Ronald T. Raines.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 22777 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanrikulu, I., Forticaux, A., Jin, S. et al. Peptide tessellation yields micrometre-scale collagen triple helices. Nature Chem 8, 1008–1014 (2016). https://doi.org/10.1038/nchem.2556

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2556

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing