Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Allosteric activation of membrane-bound glutamate receptors using coordination chemistry within living cells

Abstract

The controlled activation of proteins in living cells is an important goal in protein-design research, but to introduce an artificial activation switch into membrane proteins through rational design is a significant challenge because of the structural and functional complexity of such proteins. Here we report the allosteric activation of two types of membrane-bound neurotransmitter receptors, the ion-channel type and the G-protein-coupled glutamate receptors, using coordination chemistry in living cells. The high programmability of coordination chemistry enabled two His mutations, which act as an artificial allosteric site, to be semirationally incorporated in the vicinity of the ligand-binding pockets. Binding of Pd(2,2′-bipyridine) at the allosteric site enabled the active conformations of the glutamate receptors to be stabilized. Using this approach, we were able to activate selectively a mutant glutamate receptor in live neurons, which initiated a subsequent signal-transduction pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Allosteric activation of glutamate receptors by OcCC.
Figure 2: Fluorescence-based screening assay for the activation of GluA2 mutants.
Figure 3: Pd(bpy)-mediated allosteric activation of GluA2(KR) in HEK293T cells.
Figure 4: Pd(bpy)-induced activation of mGluR1 in HEK293 cells.
Figure 5: Pd(bpy)-mediated activation of GluA2(KR) in cultured cerebral cortical neurons.

Similar content being viewed by others

References

  1. Zorn, J. A. & Wells, J. A. Turning enzymes ON with small molecules. Nature Chem. Biol. 6, 179–188 (2010).

    Article  CAS  Google Scholar 

  2. Rakhit, R., Navarro, R. & Wandless, T. J. Chemical biology strategies for posttranslational control of protein function. Chem. Biol. 21, 1238–1252 (2014).

    Article  CAS  Google Scholar 

  3. Wolan, D. W., Zorn, J. A., Gray, D. C. & Wells, J. A. Small-molecule activators of a proenzyme. Science 326, 853–858 (2009).

    Article  CAS  Google Scholar 

  4. Banaszynski, L. A., Chen, L.-C., Maynard-Smith, L. A., Ooi, A. G. L. & Wandless, T. J. A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell 126, 995–1004 (2006).

    Article  CAS  Google Scholar 

  5. Guo, Z., Zhou, D. & Schultz, P. G. Designing small-molecule switches for protein–protein interactions. Science 288, 2042–2045 (2000).

    Article  CAS  Google Scholar 

  6. Qiao, Y., Molina, H., Pandey, A., Zhang, J. & Cole, P. A. Chemical rescue of a mutant enzyme in living cells. Science 311, 1293–1297 (2006).

    Article  CAS  Google Scholar 

  7. Li, H., Hah, J.-M. & Lawrence, D. S. Light-mediated liberation of enzymatic activity: ‘small molecule’ caged protein equivalents. J. Am. Chem. Soc. 130, 10474–10475 (2008).

    Article  CAS  Google Scholar 

  8. Arbely, E., Torres-Kolbus, J., Deiters, A. & Chin, J. W. Photocontrol of tyrosine phosphorylation in mammalian cells via genetic encoding of photocaged tyrosine. J. Am. Chem. Soc. 134, 11912–11915 (2012).

    Article  CAS  Google Scholar 

  9. Li, J. et al. Palladium-triggered deprotection chemistry for protein activation in living cells. Nature Chem. 6, 352–361 (2014).

    Article  CAS  Google Scholar 

  10. Li, J., Jia, S. & Chen, P. R. Diels–Alder reaction-triggered bioorthogonal protein decaging in living cells. Nature Chem. Biol. 10, 1003–1005 (2014).

    Article  CAS  Google Scholar 

  11. Knight, Z. A. & Shokat, K. M. Chemical genetics: where genetics and pharmacology meet. Cell 128, 425–430 (2007).

    Article  CAS  Google Scholar 

  12. Belshaw, P. J., Schoepfer, J. G., Liu, K.-Q., Morrison, K. L. & Schreiber, S. L. Rational design of orthogonal receptor–ligand combinations. Angew. Chem. Int. Ed. 34, 2129–2132 (1995).

    Article  CAS  Google Scholar 

  13. Bishop, A. C. et al. A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 407, 395–401 (2000).

    Article  CAS  Google Scholar 

  14. Baud, M. G. J. et al. A bump-and-hole approach to engineer controlled selectivity of BET bromodomain chemical probes. Science 346, 638–641 (2014).

    Article  CAS  Google Scholar 

  15. Lu, Y., Yeung, N., Sieracki, N. & Marshall, N. M. Design of functional metalloproteins. Nature 460, 855–862 (2009).

    Article  CAS  Google Scholar 

  16. Heinisch, T. & Ward, T. R. Design strategies for the creation of artificial metalloenzymes. Curr. Opin. Chem. Biol. 14, 184–199 (2010).

    Article  CAS  Google Scholar 

  17. Yu, F. et al. Protein design: toward functional metalloenzymes. Chem. Rev. 114, 3495–3578 (2014).

    Article  CAS  Google Scholar 

  18. Yeung, N. et al. Rational design of a structural and functional nitric oxide reductase. Nature 462, 1079–1082 (2009).

    Article  CAS  Google Scholar 

  19. Faiella, M. et al. An artificial di-iron oxo-protein with phenol oxidase activity. Nature Chem. Biol. 5, 882–884 (2009).

    Article  CAS  Google Scholar 

  20. Zastrow, M. L., Peacock, A. F. A., Stuckey, J. A. & Pecoraro, V. L. Hydrolytic catalysis and structural stabilization in a designed metalloprotein. Nature Chem. 4, 118–123 (2012).

    Article  CAS  Google Scholar 

  21. Song, W. J. & Tezcan, F. A. A designed supramolecular protein assembly with in vivo enzymatic activity. Science 346, 1525–1528 (2014).

    Article  CAS  Google Scholar 

  22. Elling, C. E., Thirstrup, K., Holst, B. & Schwartz, T. W. Conversion of agonist site to metal-ion chelator site in the β2-adrenergic receptor. Proc. Natl Acad. Sci. USA 96, 12322–12327 (1999).

    Article  CAS  Google Scholar 

  23. Joh, N. H. et al. De novo design of a transmembrane Zn2+-transporting four-helix bundle. Science 346, 1520–1524 (2014).

    Article  CAS  Google Scholar 

  24. Conklin, B. R. et al. Engineering GPCR signaling pathways with RASSLs. Nature Methods 5, 673–678 (2008).

    Article  CAS  Google Scholar 

  25. Magnus, C. J. et al. Chemical and genetic engineering of selective ion channel–ligand interactions. Science 333, 1292–1296 (2011).

    Article  CAS  Google Scholar 

  26. Goodey, N. M. & Benkovic, S. J. Allosteric regulation and catalysis emerge via a common route. Nature Chem. Biol. 4, 474–482 (2008).

    Article  CAS  Google Scholar 

  27. De Smet, F., Christopoulos, A. & Carmeliet, P. Allosteric targeting of receptor tyrosine kinases. Nature Biotech. 32, 1113–1120 (2014).

    Article  CAS  Google Scholar 

  28. Christopoulos, A. Allosteric binding sites on cell-surface receptors: novel targets for drug discovery. Nature Rev. Drug Discov. 1, 198–210 (2002).

    Article  CAS  Google Scholar 

  29. Fehrentz, T., Schönberger, M. & Trauner, D. Optochemical genetics. Angew. Chem. Int. Ed. 50, 12156–12182 (2011).

    Article  CAS  Google Scholar 

  30. Volgraf, M. et al. Allosteric control of an ionotropic glutamate receptor with an optical switch. Nature Chem. Biol. 2, 47–52 (2006).

    Article  CAS  Google Scholar 

  31. Janovjak, H., Szobota, S., Wyart, C., Trauner, D. & Isacoff, E. Y. A light-gated, potassium-selective glutamate receptor for the optical inhibition of neuronal firing. Nature Neurosci. 13, 1027–1032 (2010).

    Article  CAS  Google Scholar 

  32. Levitz, J. et al. Optical control of metabotropic glutamate receptors. Nature Neurosci. 16, 507–516 (2013).

    Article  CAS  Google Scholar 

  33. Traynelis, S. F. et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev. 62, 405–496 (2010).

    Article  CAS  Google Scholar 

  34. Fleming, J. J. & England, P. M. AMPA receptors and synaptic plasticity: a chemist's perspective. Nature Chem. Biol. 6, 89–97 (2010).

    Article  CAS  Google Scholar 

  35. Armstrong, N. & Gouaux, E. Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: crystal structures of the GluR2 ligand binding core. Neuron 28, 165–181 (2000).

    Article  CAS  Google Scholar 

  36. Sobolevsky, A. I., Rosconi, M. P. & Gouaux, E. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462, 745–756 (2009).

    Article  CAS  Google Scholar 

  37. Armstrong, N., Jasti, J., Beich-Frandsen, M. & Gouaux, E. Measurement of conformational changes accompanying desensitization in an ionotropic glutamate receptor. Cell 127, 85–97 (2006).

    Article  CAS  Google Scholar 

  38. Holm, R. H., Kennepohl, P. & Solomon, E. I. Structural and functional aspects of metal sites in biology. Chem. Rev. 96, 2239–2314 (1996).

    Article  CAS  Google Scholar 

  39. Kelso, M. J., Hoang, H. N., Appleton, T. G. & Fairlie, D. P. The first solution structure of a single α-helical turn. A pentapeptide α-helix stabilized by a metal clip. J. Am. Chem. Soc. 122, 10488–10489 (2000).

    Article  CAS  Google Scholar 

  40. Hamachi, I. et al. Pd(en) as a sequence-selective molecular pinch for α-helical peptides. Chem. Lett. 30, 16–17 (2001).

    Article  Google Scholar 

  41. Fujita, M., Tominaga, M., Hori, A. & Therrien, B. Coordination assemblies from a Pd(II)-cornered square complex. Acc. Chem. Res. 38, 369–378 (2005).

    Article  CAS  Google Scholar 

  42. Pelton, J. G., Torchia, D. A., Meadow, N. D. & Roseman, S. Tautomeric states of the active-site histidines of phosphorylated and unphosphorylated IIIGlc, a signal-transducing protein from Escherichia coli, using two-dimensional heteronuclear NMR techniques. Protein Sci. 2, 543–558 (1993).

    Article  CAS  Google Scholar 

  43. Miki, T. et al. LDAI-based chemical labeling of intact membrane proteins and its pulse-chase analysis under live cell conditions. Chem. Biol. 21, 1013–1022 (2014).

    Article  CAS  Google Scholar 

  44. Niswender, C. M. & Conn, P. J. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu. Rev. Pharmacol. Toxicol. 50, 295–322 (2010).

    Article  CAS  Google Scholar 

  45. Rondard, P., Goudet, C., Kniazeff, J., Pin, J.-P. & Prézeau, L. The complexity of their activation mechanism opens new possibilities for the modulation of mGlu and GABAB class C G protein-coupled receptors. Neuropharmacology 60, 82–92 (2011).

    Article  CAS  Google Scholar 

  46. Kunishima, N. et al. Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 407, 971–977 (2000).

    Article  CAS  Google Scholar 

  47. Kobilka, B. K. & Deupi, X. Conformational complexity of G-protein-coupled receptors. Trends Pharmacol. Sci. 28, 397–406 (2007).

    Article  CAS  Google Scholar 

  48. Deisseroth, K., Heist, E. K. & Tsien, R. W. Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons. Nature 392, 198–202 (1998).

    Article  CAS  Google Scholar 

  49. Benito, E. & Barco, A. CREB's control of intrinsic and synaptic plasticity: implications for CREB-dependent memory models. Trends Neurosci. 33, 230–240 (2010).

    Article  CAS  Google Scholar 

  50. Chen, Y. et al. NS21: re-defined and modified supplement B27 for neuronal cultures. J. Neurosci. Methods 171, 239–247 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Japan Science and Technology Agency CREST of Molecular Technologies and JSPS KAKENHI (JP15H01637) to I.H., Japan Society for the Promotion of Science Grant-in-Aid for Scientific Research (B) to S.K. (25282238), Grants-in-Aid for Research Activity Start-up to R.K. (15H06318) and by the Ministry of Education, Culture, Sports, Science and Technology in Japan. We thank Y. Mori for providing the pEGFP-F plasmid and E. Gouaux for giving the plasmid of S1S2J. We also acknowledge the help of O. Hanpanich for constructing the plasmids of mGluR1.

Author information

Authors and Affiliations

Authors

Contributions

I.H. and S.K. conceived the project. R.K. and M.Y. conducted the construction of GluA2 plasmids. R.K. performed Ca2+ imaging in HEK293T and cultured cortical neurons, western blot analyses in cultured cortical neurons and the immunostaining experiment in HEK293T cells. R.K. conducted the construction of the plasmid of S1S2J(KR) and prepared the protein sample of S1S2J (WT and mutants) for 1H–15N HMQC NMR spectroscopy and fluorescence measurements. H.T. and M.S. performed and analysed 1H–15N HMQC NMR spectroscopy. S.K., R.K. and Y.M. performed the fluorescence measurements. Y.M. and M.Y. conducted the construction of the mGluR1 plasmids. Y.M. performed the fluorescent Ca2+ imaging in HEK293 cells. S.K. conducted the p-CREB assay in rat cortical neurons. T.N., R.I. and M.Y. contributed to the analysis and interpretation of Ca2+-imaging data. T.N. and R.I. conducted the electrophysiological measurements of cell capacitance and membrane potential. R.K., S.K. and I.H. wrote the manuscript. All the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Shigeki Kiyonaka or Itaru Hamachi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2241 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiyonaka, S., Kubota, R., Michibata, Y. et al. Allosteric activation of membrane-bound glutamate receptors using coordination chemistry within living cells. Nature Chem 8, 958–967 (2016). https://doi.org/10.1038/nchem.2554

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2554

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing