Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Incorporation of well-dispersed sub-5-nm graphitic pencil nanodots into ordered mesoporous frameworks

Abstract

Over the past few decades the direct assembly of optical nanomaterials into ordered mesoporous frameworks has proved to be a considerable challenge. Here we propose the incorporation of ultrasmall (sub-5-nm) graphitic pencil nanodots into ordered mesoporous frameworks for the fabrication of optoelectronic materials. The nanodots, which were prepared from typical commercial graphite pencils by an electrochemical tailoring process, combine properties such as uniform size (3 nm), excellent dispersibility and high photoconversion efficiency (27%). These nanodots were incorporated into a variety of ordered mesoporous frameworks (TiO2, silica, carbon and silica–carbon materials) by co-assembly, driven by hydrogen bonding, with the frameworks' precursors. The resulting materials showed a high degree of ordering, and a sharp increase in their optical performance (for example, photocurrent density). We envisage that the large-scale synthesis of ultrasmall carbon nanodots and their incorporation into ordered mesoporous frameworks may facilitate the preparation of materials with a variety of optical properties.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proposed synthesis process and model of the co-assembly.
Figure 2: Structural analysis and optical properties.
Figure 3: The versatile self-inserted co-assembly of the ordered mesoporous structures with ultrasmall nanodots.
Figure 4: Optoelectronic performance.

Similar content being viewed by others

References

  1. Zhao, D. Y. et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548–552 (1998).

    Article  CAS  Google Scholar 

  2. Tian, B. et al. Self-adjusted synthesis of ordered stable mesoporous minerals by acid–base pairs. Nature Mater. 2, 159–163 (2003).

    Article  CAS  Google Scholar 

  3. Lee, J. S., Wang, X., Luo, H., Baker, G. A. & Dai, S. Facile ionothermal synthesis of microporous and mesoporous carbons from task specific ionic liquids. J. Am. Chem. Soc. 131, 4596–4597 (2009).

    Article  CAS  Google Scholar 

  4. Liu, J. et al. A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nature Commun. 4, 2789 (2013).

    Article  Google Scholar 

  5. Guo, B. et al. Soft-templated mesoporous carbon‒carbon nanotube composites for high performance lithium‒ion batteries. Adv. Mater. 23, 4661–4666 (2011).

    Article  CAS  Google Scholar 

  6. Baeck, S. H., Choi, K. S., Jaramillo, T. F., Stucky, G. D. & McFarland, E. W. Enhancement of photocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO3 thin films. Adv. Mater. 15, 1269–1273 (2003).

    Article  CAS  Google Scholar 

  7. Gao, J. et al. High-performance ionic diode membrane for salinity gradient power generation. J. Am. Chem. Soc. 136, 12265–12272 (2014).

    Article  CAS  Google Scholar 

  8. Fan, R., Huh, S., Yan, R., Arnold, J. & Yang, P. Gated proton transport in aligned mesoporous silica films. Nature Mater. 7, 303–307 (2008).

    Article  CAS  Google Scholar 

  9. Li, Y. et al. Highly ordered mesoporous tungsten oxides with a large pore size and crystalline framework for H2S sensing. Angew. Chem. Int. Ed. 53, 9035–9040 (2014).

    Article  CAS  Google Scholar 

  10. Qin, Y. et al. Hierarchically porous CuO hollow spheres fabricated via a one-pot template-free method for high-performance gas sensors. J. Phys. Chem. C 116, 11994–12000 (2012).

    Article  CAS  Google Scholar 

  11. Neyshtadt, S. et al. Understanding and controlling organic–inorganic interfaces in mesostructured hybrid photovoltaic materials. J. Am. Chem. Soc. 133, 10119–10133 (2011).

    Article  CAS  Google Scholar 

  12. Inagaki, S., Guan, S., Ohsuna, T. & Terasaki, O. An ordered mesoporous organosilica hybrid material with a crystal-like wall structure. Nature 416, 304–307 (2002).

    Article  CAS  Google Scholar 

  13. Klaysom, C., Moon, S.-H., Ladewig, B. P., Lu, G. Q. M. & Wang, L. The influence of inorganic filler particle size on composite ion-exchange membranes for desalination. J. Phys. Chem. C 115, 15124–15132 (2011).

    Article  CAS  Google Scholar 

  14. Fang, W., Yang, J., Gong, J. & Zheng, N. Photo- and pH-triggered release of anticancer drugs from mesoporous silica-coated Pd@Ag nanoparticles. Adv. Funct. Mater. 22, 842–848 (2012).

    Article  CAS  Google Scholar 

  15. Yu, A., Wang, Y., Barlow, E. & Caruso, F. Mesoporous silica particles as templates for preparing enzyme-loaded biocompatible microcapsules. Adv. Mater. 17, 1737–1741 (2005).

    Article  CAS  Google Scholar 

  16. Lee, C.-H., Lin, T.-S. & Mou, C.-Y. Mesoporous materials for encapsulating enzymes. Nano Today 4, 165–179 (2009).

    Article  CAS  Google Scholar 

  17. Galeano, C. et al. Toward highly stable electrocatalysts via nanoparticle pore confinement. J. Am. Chem. Soc. 134, 20457–20465 (2012).

    Article  CAS  Google Scholar 

  18. Fang, X. et al. Hollow mesoporous aluminosilica spheres with perpendicular pore channels as catalytic nanoreactors. ACS Nano 6, 4434–4444 (2012).

    Article  CAS  Google Scholar 

  19. Scott, B. J., Wirnsberger, G. & Stucky, G. D. Mesoporous and mesostructured materials for optical applications. Chem. Mater. 13, 3140–3150 (2001).

    Article  CAS  Google Scholar 

  20. Wan, Y. & Zhao, D. Y. On the controllable soft-templating approach to mesoporous silicates. Chem. Rev. 107, 2821–2860 (2007).

    Article  CAS  Google Scholar 

  21. Qiao, S. Z. et al. Surface-functionalized periodic mesoporous organosilica hollow spheres. J. Phys. Chem. C 113, 8673–8682 (2009).

    Article  CAS  Google Scholar 

  22. Inagaki, S. et al. Light harvesting by a periodic mesoporous organosilica chromophore. Angew. Chem. Int. Ed. 48, 4042–4046 (2009).

    Article  CAS  Google Scholar 

  23. Tsou, C.-J., Chu, C.-Y., Hung, Y. & Mou, C.-Y. A broad range fluorescent pH sensor based on hollow mesoporous silica nanoparticles, utilising the surface curvature effect. J. Mater. Chem. B 1, 5557–5563 (2013).

    Article  CAS  Google Scholar 

  24. Guan, M. et al. Assembling photoluminescent silicon nanocrystals into periodic mesoporous organosilica. J. Am. Chem. Soc. 134, 8439–8446 (2012).

    Article  CAS  Google Scholar 

  25. Wan, Y., Yang, H. & Zhao, D. Y. ‘Host–guest’ chemistry in the synthesis of ordered nonsiliceous mesoporous materials. Acc. Chem. Res. 39, 423–432 (2006).

    Article  CAS  Google Scholar 

  26. Petkovich, N. D. & Stein, A. Controlling macro- and mesostructures with hierarchical porosity through combined hard and soft templating. Chem. Soc. Rev. 42, 3721–3739 (2013).

    Article  CAS  Google Scholar 

  27. Rebbin, V., Rothkirch, A., Ohta, N., Hikima, T. & Funari, S. S. Size limit on the formation of periodic mesoporous organosilicas (PMOs). Langmuir 30, 1900–1905 (2014).

    Article  CAS  Google Scholar 

  28. Wang, Y. & Hu, A. Carbon quantum dots: synthesis, properties and applications. J. Mater. Chem. C 2, 6921–6939 (2014).

    Article  CAS  Google Scholar 

  29. Ding, C., Zhu, A. & Tian, Y. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc. Chem. Res. 47, 20–30 (2013).

    Article  Google Scholar 

  30. Zhang, R. et al. Ordered macro-/mesoporous anatase films with high thermal stability and crystallinity for photoelectrocatalytic water-splitting. Adv. Energy Mater. 4, 1301725 (2014).

    Article  Google Scholar 

  31. Kong, B. et al. Carbon dot-based inorganic–organic nanosystem for two-photon imaging and biosensing of pH variation in living cells and tissues. Adv. Mater. 24, 5844–5848 (2012).

    Article  CAS  Google Scholar 

  32. Feng, D. et al. Multi-layered mesoporous TiO2 thin films with large pores and highly crystalline frameworks for efficient photoelectrochemical conversion. J. Mater. Chem. A 1, 1591–1599 (2013).

    Article  CAS  Google Scholar 

  33. Wang, M. et al. An interface-directed coassembly approach to synthesize uniform large-pore mesoporous silica spheres. J. Am. Chem. Soc. 136, 1884–1892 (2014).

    Article  CAS  Google Scholar 

  34. Sun, Z. et al. A general chelate-assisted co-assembly to metallic nanoparticles—incorporated ordered mesoporous carbon catalysts for Fischer–Tropsch synthesis. J. Am. Chem. Soc. 134, 17653–17660 (2012).

    Article  CAS  Google Scholar 

  35. Blöuml, P. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  36. Tang, W., Sanville, E. & Henkelman, G. A grid‒based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 21, 084204 (2009).

    Article  CAS  Google Scholar 

  37. Du, A. et al. Hybrid graphene/titania nanocomposite: interface charge transfer, hole doping, and sensitization for visible light response. J. Phys. Chem. Lett. 2, 894–899 (2011).

    Article  CAS  Google Scholar 

  38. Jiao, Y., Zheng, Y., Jaroniec, M. & Qiao, S. Z. Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadmap to achieve the best performance. J. Am. Chem. Soc. 136, 4394–4403 (2014).

    Article  CAS  Google Scholar 

  39. Tang, J. et al. Solar-driven photoelectrochemical probing of nanodot/nanowire/cell interface. Nano Lett. 14, 2702–2708 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the State Key Basic Research Program of China (2012CB224805, 2013CB934104), the National Natural Science Foundation of China (21210004, 21322311 and 21473038), the Shanghai Leading Academic Discipline Project (B108), the Science and Technology Commission of Shanghai Municipality (14JC1400700, 14JC1490500), the Australian Research Council (DP120101194, DP140104062) and the Deanship of Scientific Research of King Saud University (IHCRG#14-102, RG#1435-010).

Author information

Authors and Affiliations

Authors

Contributions

B.K., G.Z., C.S. and D.Y.Z. conceived the idea of the project. B.K. devised and performed syntheses and characterization of the materials. B.K., J.T., T.J., C.P., J.W., J.Y., Y.W. and X.W. performed structural characterization, device fabrication, performance measurements and data analysis. Y.Z. and X.G. developed the structural models and carried out the numerical simulations. B.K., C.S., G.Z. and D.Y.Z. wrote the manuscript. All the authors discussed the results and commented on the manuscript at all stages.

Corresponding authors

Correspondence to Gengfeng Zheng, Cordelia Selomulya or Dongyuan Zhao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4803 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, B., Tang, J., Zhang, Y. et al. Incorporation of well-dispersed sub-5-nm graphitic pencil nanodots into ordered mesoporous frameworks. Nature Chem 8, 171–178 (2016). https://doi.org/10.1038/nchem.2405

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2405

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing