Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Asymmetric triplex metallohelices with high and selective activity against cancer cells

Abstract

Small cationic amphiphilic α-helical peptides are emerging as agents for the treatment of cancer and infection, but they are costly and display unfavourable pharmacokinetics. Helical coordination complexes may offer a three-dimensional scaffold for the synthesis of mimetic architectures. However, the high symmetry and modest functionality of current systems offer little scope to tailor the structure to interact with specific biomolecular targets, or to create libraries for phenotypic screens. Here, we report the highly stereoselective asymmetric self-assembly of very stable, functionalized metallohelices. Their anti-parallel head-to-head-to-tail ‘triplex’ strand arrangement creates an amphipathic functional topology akin to that of the active sub-units of, for example, host-defence peptides and p53. The metallohelices display high, structure-dependent toxicity to the human colon carcinoma cell-line HCT116 p53++, causing dramatic changes in the cell cycle without DNA damage. They have lower toxicity to human breast adenocarcinoma cells (MDA-MB-468) and, most remarkably, they show no significant toxicity to the bacteria methicillin-resistant Staphylococcus aureus and Escherichia coli.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Metallohelix architectures.
Figure 2: Synthesis and characterisation of triplex metallohelices.
Figure 3: Exposure of cancer cells to triplex metallohelices.

Similar content being viewed by others

References

  1. Zanetti, M., Gennaro, R. & Romeo, D. Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett. 374, 1–5 (1995).

    Article  CAS  Google Scholar 

  2. Lane, D. P. p53, guardian of the genome. Nature 358, 15–16 (1992).

    Article  CAS  Google Scholar 

  3. Dürr, U. H. N., Sudheendra, U. S. & Ramamoorthy, A. LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim. Biophys. Acta Biomembr. 1758, 1408–1425 (2006).

    Article  Google Scholar 

  4. Wu, W. K. K. et al. Emerging roles of the host defense peptide LL-37 in human cancer and its potential therapeutic applications. Int. J. Cancer 127, 1741–1747 (2010).

    Article  CAS  Google Scholar 

  5. Baker, S. J. et al. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 244, 217–221 (1989).

    Article  CAS  Google Scholar 

  6. Takahashi, T. et al. p53: a frequent target for genetic abnormalities in lung cancer. Science 246, 491–494 (1989).

    Article  CAS  Google Scholar 

  7. Walensky, L. D. et al. Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305, 1466–1470 (2004).

    Article  CAS  Google Scholar 

  8. Gavathiotis, E. et al. BAX activation is initiated at a novel interaction site. Nature 455, 1076–1081 (2008).

    Article  CAS  Google Scholar 

  9. Cheng, R. P., Gellman, S. H. & DeGrado, W. F. Beta-peptides: from structure to function. Chem. Rev. 101, 3219–3232 (2001).

    Article  CAS  Google Scholar 

  10. Appella, D. H., Christianson, L. A., Karle, I. L., Powell, D. R. & Gellman, S. H. Beta-peptide foldamers: robust helix formation in a new family of beta-amino acid oligomers. J. Am. Chem. Soc. 118, 13071–13072 (1996).

    Article  CAS  Google Scholar 

  11. Johnson, L. M. & Gellman, S. H. in Methods in Enzymology (ed. Keating, A. E.) 407–429 (Methods in Protein Design series Vol. 523 Academic, 2013).

  12. Davis, J. M., Tsou, L. K. & Hamilton, A. D. Synthetic non-peptide mimetics of alpha-helices. Chem. Soc. Rev. 36, 326–334 (2007).

    Article  CAS  Google Scholar 

  13. Azzarito, V., Long, K., Murphy, N. S. & Wilson, A. J. Inhibition of α-helix-mediated protein–protein interactions using designed molecules. Nature Chem. 5, 161–173 (2013).

    Article  CAS  Google Scholar 

  14. Lehn, J. M. et al. Spontaneous assembly of double-stranded helicates from oligobipyridine ligands and copper(I) cations: structure of an inorganic double helix. Proc. Natl Acad. Sci. USA 84, 2565–2569 (1987).

    Article  CAS  Google Scholar 

  15. Albrecht, M. & Fröhlich, R. Controlling the orientation of sequential ligands in the self-assembly of binuclear coordination compounds. J. Am. Chem. Soc. 119, 1656–1661 (1997).

    Article  CAS  Google Scholar 

  16. Torelli, S., Delahaye, S., Hauser, A., Bernardinelli, G. & Piguet, C. Ruthenium(II) as a novel labile partner in thermodynamic self-assembly of heterobimetallic d–f triple-stranded helicates. Chem. Eur. J. 10, 3503–3516 (2004).

    Article  CAS  Google Scholar 

  17. Hahn, F. E., Schulze Isfort, C. & Pape, T. A dinuclear, triple-stranded helicate with a diamide-bridged catechol/benzenedithiol ligand. Angew. Chem. Int. Ed. 43, 4807–4810 (2004).

    CAS  Google Scholar 

  18. Rice, C. R., Baylies, C. J., Jeffery, J. C., Paul, R. L. & Ward, M. D. Mononuclear Cu(II) and triple helical dinuclear Co(II) complexes of a new potentially tetradentate ligand containing inequivalent bidentate units. Inorg. Chim. Acta 324, 331–335 (2001).

    Article  CAS  Google Scholar 

  19. Hannon, M. J., Bunce, S., Clarke, A. J. & Alcock, N. W. Spacer control of directionality in supramolecular helicates using an inexpensive approach. Angew. Chem. Int. Ed. 38, 1277–1278 (1999).

    Article  CAS  Google Scholar 

  20. Constable, E. C., Heirtzler, F. R., Neuburger, M. & Zehnder, M. Directional ligands in helicate selfassembly. Supramol. Chem. 5, 197–200 (1995).

    Article  CAS  Google Scholar 

  21. Albrecht, M., Napp, M., Schneider, M., Weis, P. & Frohlich, R. Kinetic thermodynamic control of the self-assembly of isomeric double-stranded dinuclear titanium(IV) complexes from a phenylalanine-bridged dicatechol ligand. Chem. Commun. 409–410 (2001).

  22. Schulze Isfort, C., Kreickmann, T., Pape, T., Frohlich, R. & Hahn, F. E. Helical complexes containing diamide-bridged benzene-o-dithiolato/catecholato ligands. Chemistry 13, 2344–2357 (2007).

    Article  Google Scholar 

  23. Howson, S. E. & Scott, P. Approaches to the synthesis of optically pure helicates. Dalton Trans. 40, 10268–10277 (2011).

    Article  CAS  Google Scholar 

  24. Kerckhoffs, J. M. C. A. et al. Enantiomeric resolution of supramolecular helicates with different surface topographies. Dalton Trans. 734–742 (2007).

  25. Hotze, A. C. G. et al. Supramolecular iron cylinder with unprecedented DNA binding is a potent cytostatic and apoptotic agent without exhibiting genotoxicity. Chem. Biol. 15, 1258–1267 (2008).

    Article  CAS  Google Scholar 

  26. Cardo, L., Sadovnikova, V., Phongtongpasuk, S., Hodges, N. J. & Hannon, M. J. Arginine conjugates of metallo-supramolecular cylinders prescribe helicity and enhance DNA junction binding and cellular activity. Chem. Commun. 47, 6575–6577 (2011).

    Article  CAS  Google Scholar 

  27. Yu, H. et al. Metallosupramolecular complex targeting an α/β discordant stretch of amyloid β peptide. Chem. Sci. 3, 3145–3153 (2012).

    Article  CAS  Google Scholar 

  28. Howson, S. E. et al. Origins of stereoselectivity in optically pure phenylethaniminopyridine tris-chelates M(NN′)3n+ (M=Mn, Fe, Co, Ni and Zn). Dalton Trans. 40, 10416–10433 (2011).

    Article  CAS  Google Scholar 

  29. Howson, S. E. et al. Self-assembling optically pure Fe(A–B)3 chelates. Chem. Commun. 1727–1729 (2009).

  30. Howson, S. E. et al. Jahn–Teller effects on p-stacking and stereoselectivity in the phenylethaniminopyridine tris-chelates Cu(NN′)32+. Dalton Trans. 41, 4477–4483 (2012).

    Article  CAS  Google Scholar 

  31. Howson, S. E. et al. Optically pure heterobimetallic helicates from self-assembly and click strategies. Dalton Trans. 42, 14967–14981 (2013).

    Article  CAS  Google Scholar 

  32. Howson, S. E. et al. Optically pure, water-stable metallo-helical ‘flexicate’ assemblies with antibiotic activity. Nature Chem. 4, 31–36 (2012).

    Article  CAS  Google Scholar 

  33. Brabec, V. et al. Metallohelices with activity against cisplatin-resistant cancer cells; does the mechanism involve DNA binding? Chem. Sci. 4, 4407–4416 (2013).

    Article  CAS  Google Scholar 

  34. Hunter, C. A. & Sanders, J. K. M. The nature of π–π interactions. J. Am. Chem. Soc. 112, 5525–5534 (1990).

    Article  CAS  Google Scholar 

  35. Grimme, S. Do special noncovalent π–π stacking interactions really exist? Angew. Chem. Int. Ed. 47, 3430–3434 (2008).

    Article  CAS  Google Scholar 

  36. Hannon, M. J., Painting, C. L., Jackson, A., Hamblin, J. & Errington, W. An inexpensive approach to supramolecular architecture. Chem. Commun. 1807–1808 (1997).

  37. Ren, S. X. et al. FK-16 derived from the anticancer peptide LL-37 induces caspase-independent apoptosis and autophagic cell death in colon cancer cells. PLoS ONE 8, e63641 (2013).

    Article  CAS  Google Scholar 

  38. Fu, D., Calvo, J. A. & Samson, L. D. Balancing repair and tolerance of DNA damage caused by alkylating agents. Nature Rev. Cancer 12, 104–120 (2012).

    Article  CAS  Google Scholar 

  39. Siddik, Z. H. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22, 7265–7279 (2003).

    Article  CAS  Google Scholar 

  40. Bonner, W. M. et al. γH2AX and cancer. Nature Rev. Cancer 8, 957–967 (2008).

    Article  CAS  Google Scholar 

  41. Krishan, A. Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining. J. Cell Biol. 66, 188–193 (1975).

    Article  CAS  Google Scholar 

  42. Nicoletti, I., Migliorati, G., Pagliacci, M. C., Grignani, F. & Riccardi, C. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J. Immunol. Methods 139, 271–279 (1991).

    Article  CAS  Google Scholar 

  43. Kajstura, M., Halicka, H. D., Pryjma, J. & Darzynkiewicz, Z. Discontinuous fragmentation of nuclear DNA during apoptosis revealed by discrete ‘sub-G1' peaks on DNA content histograms. Cytometry A 71A, 125–131 (2007).

    Article  Google Scholar 

  44. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  CAS  Google Scholar 

  45. Granovsky, A. A. Firefly version 7.1.G; http://classic.chem.msu.su/gran/firefly/index.html

  46. Schmidt, M. W. et al. General atomic and molecular electronic structure system. J. Comput. Chem. 14, 1347–1363 (1993).

    Article  CAS  Google Scholar 

  47. Deeth, R. J., Anastasi, A., Diedrich, C. & Randell, K. Molecular modelling for transition metal complexes: dealing with d-electron effects. Coord. Chem. Rev. 253, 795–816 (2009).

    Article  CAS  Google Scholar 

  48. Deeth, R. J., Fey, N. & Williams-Hubbard, B. DommiMOE: an implementation of ligand field molecular mechanics in the molecular operating environment. J. Comput. Chem. 26, 123–130 (2005).

    Article  CAS  Google Scholar 

  49. Andrews, J. M. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 48, 5–16 (2001).

    Article  CAS  Google Scholar 

  50. Coles, S. J. & Gale, P. A. Changing and challenging times for service crystallography. Chem. Sci. 3, 683–689 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the EPSRC and the University of Warwick for financial support, and the National Crystallographic Service for recording the X-ray data (structure code AF20)50.

Author information

Authors and Affiliations

Authors

Contributions

A.D.F. performed computational work under the direction of D.J.F. A.D.F. and R.A.K. synthesized and characterized the compounds following early studies by S.E.H., and developed and conducted stability studies. R.A.K. and Q.M.A.A. performed the biological work under the direction of R.M.P. P.G. developed a synthesis of [Fe2(C25H20N4)3]Cl4 and performed stability studies. G.J.C. solved and refined the X-ray crystal data. D.H.S. conducted the antimicrobial experiments under the direction of D.I.R. P.S. conceived and directed the project, interpreted the data and wrote the manuscript.

Corresponding author

Correspondence to Peter Scott.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2831 kb)

Supplementary information

Crystallographic data for compound RC,∆Zn,HHT-[Zn2L3a3][ClO4]4.4H2O (CIF 974 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faulkner, A., Kaner, R., Abdallah, Q. et al. Asymmetric triplex metallohelices with high and selective activity against cancer cells. Nature Chem 6, 797–803 (2014). https://doi.org/10.1038/nchem.2024

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2024

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing