Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In situ growth of nanoparticles through control of non-stoichiometry

This article has been updated

Abstract

Surfaces decorated with uniformly dispersed catalytically active nanoparticles play a key role in many fields, including renewable energy and catalysis. Typically, these structures are prepared by deposition techniques, but alternatively they could be made by growing the nanoparticles in situ directly from the (porous) backbone support. Here we demonstrate that growing nano-size phases from perovskites can be controlled through judicious choice of composition, particularly by tuning deviations from the ideal ABO3 stoichiometry. This non-stoichiometry facilitates a change in equilibrium position to make particle exsolution much more dynamic, enabling the preparation of compositionally diverse nanoparticles (that is, metallic, oxides or mixtures) and seems to afford unprecedented control over particle size, distribution and surface anchorage. The phenomenon is also shown to be influenced strongly by surface reorganization characteristics. The concept exemplified here may serve in the design and development of more sophisticated oxide materials with advanced functionality across a range of possible domains of application.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagrams that anticipate the key role of perovskite non-stoichiometry for in situ growth of nanoparticles.
Figure 2: Accommodation of B-site cation substitution into A-site-deficient perovskites.
Figure 3: The role of non-stoichiometry in the formation of exsolutions on stoichiometric and A-site-deficient perovskites illustrated through SEM micrographs.
Figure 4: The key role of the innate perovskite surface structure in the formation of exsolutions.
Figure 5: Exsolutions of both Ni and CeO2 in the non-stoichiometry-tailored system La0.8Ce0.1Ni0.4Ti0.6O3.
Figure 6: The role of A-site deficiency and extent of reduction in the exsolution of B-site species.

Similar content being viewed by others

Change history

  • 08 October 2013

    In the version of this Article originally published online, two references to panels in Fig. 4 were incorrect: In the caption for Fig. 4g in “Sample f aged in 3%H2O/5%H2/Ar…”, it should have read ‘Sample e’. In the last paragraph of the section ‘Influence of stoichiometry on surface morphology’, in “… by reducing some of the decorated surfaces (for example, see Fig. 4c)…” it should have read ‘4e’. These errors have been corrected in all versions of the Article.

References

  1. Yates, J. T. & Campbell, C. T. Surface chemistry: key to control and advance myriad technologies. Proc. Natl Acad. Sci. USA 108, 911–916 (2011).

    Article  CAS  Google Scholar 

  2. Farmer, J. A. & Campbell, C. T. Ceria maintains smaller metal catalyst particles by strong metal-support bonding. Science 329, 933–936 (2010).

    Article  CAS  Google Scholar 

  3. Gorte, R. J. & Vohs, J. M. Nanostructured anodes for solid oxide fuel cells. Curr. Opin. Colloid. Interface Sci. 14, 236–244 (2009).

    Article  CAS  Google Scholar 

  4. Kim, J-S. et al. Highly active and thermally stable core–shell catalysts for solid oxide fuel cells. J. Electrochem. Soc. 158, B596 (2011).

    Article  CAS  Google Scholar 

  5. Nishihata, Y. et al. Self-regeneration of a Pd-perovskite catalyst for automotive emissions control. Nature 418, 164–167 (2002).

    Article  CAS  Google Scholar 

  6. Tanaka, H. et al. The intelligent catalyst having the self-regenerative function of Pd, Rh and Pt for automotive emissions control. Catal. Today 117, 321–328 (2006).

    Article  CAS  Google Scholar 

  7. Madsen, B. D., Kobsiriphat, W., Wang, Y., Marks, L. D. & Barnett, S. A. Nucleation of nanometer-scale electrocatalyst particles in solid oxide fuel cell anodes. J. Power Sources 166, 64–67 (2007).

    Article  CAS  Google Scholar 

  8. Madsen, B. D., Kobsiriphat, W., Wang, Y., Marks, L. D. & Barnett, S. SOFC anode performance enhancement through precipitation of nanoscale catalysts. ECS Trans. 7, 1339–1348 (2007).

    Article  CAS  Google Scholar 

  9. Kobsiriphat, W., Madsen, B. D., Wang, Y., Marks, L. D. & Barnett, S. A. La0.8Sr0.2Cr1−xRuxO3−δ–Gd0.1Ce0.9O1.95 solid oxide fuel cell anodes: Ru precipitation and electrochemical performance. Solid State Ionics 180, 257–264 (2009).

    Article  CAS  Google Scholar 

  10. Bierschenk, D. M. et al. Pd-substituted (La,Sr)CrO3−δ–Ce0.9Gd0.1O2−δ solid oxide fuel cell anodes exhibiting regenerative behavior. J. Power Sources 196, 3089–3094 (2011).

    Article  CAS  Google Scholar 

  11. Katz, M. B. et al. Reversible precipitation/dissolution of precious-metal clusters in perovskite-based catalyst materials: bulk versus surface re-dispersion. J. Catal. 293, 145–148 (2012).

    Article  CAS  Google Scholar 

  12. Neagu, D. & Irvine, J. T. S. Structure and properties of La0.4Sr0.4TiO3 ceramics for use as anode materials in solid oxide fuel cells. Chem. Mater. 22, 5042–5053 (2010).

    Article  CAS  Google Scholar 

  13. Howard, C., Lumpkin, G., Smith, R. & Zhang, Z. Crystal structures and phase transition in the system SrTiO3–La2/3TiO3 . J. Solid State Chem. 177, 2726–2732 (2004).

    Article  CAS  Google Scholar 

  14. Battle, P., Bennett, J. E., Sloan, J., Tilley, R. J. D. & Vente, J. F. A-site cation-vacancy ordering in Sr1−3x/2LaxTiO3: a study by HRTEM. J. Solid State Chem. 149, 360–369 (2000).

    Article  CAS  Google Scholar 

  15. Anderson, M. T., Vaughey, J. T. & Poeppelmeier, K. R. Structural similarities among oxygen-deficient perovskites. Chem. Mater. 5, 151–165 (1993).

    Article  CAS  Google Scholar 

  16. Wang, Z. L. & Kang, Z. C. Functional and Smart Materials: Structural Evolution and Structure Analysis (Springer, 1998).

    Book  Google Scholar 

  17. Bowden, M. E., Jefferson, D. A. & Brown, I. W. M. Determination of layer structure in Sr1−xLaxTiO3+0.5x (0 < x < 1) compounds by high-resolution electron microscopy. J. Solid State Chem. 117, 88–96 (1995).

    Article  CAS  Google Scholar 

  18. Canales‐Vázquez, J., Smith, M. J., Irvine, J. T. S. & Zhou, W. Studies on the reorganization of extended defects with increasing n in the perovskite‐based La4Srn−4TinO3n+2 series. Adv. Funct. Mater. 15, 1000–1008 (2005).

    Article  Google Scholar 

  19. Ruddlesden, S. N. & Popper, P. New compounds of the K2NiF4 type. Acta Crystallogr. 10, 538–539 (1957).

    Article  CAS  Google Scholar 

  20. Ruiz-Morales, J. C. et al. Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation. Nature 439, 568–571 (2006).

    Article  CAS  Google Scholar 

  21. Horvath, G., Gerblinger, J., Meixner, H. & Giber, J. Segregation driving forces in perovskite titanates. Sensor Actuat. B 32, 93–99 (1996).

    Article  CAS  Google Scholar 

  22. Noguera, C. Polar oxide surfaces. J. Phys. Condens. Matter 12, R367–R410 (2000).

    Article  CAS  Google Scholar 

  23. Deak, D. S. Strontium titanate surfaces. Mater. Sci. Tech. Ser. 23, 127–136 (2007).

    Article  CAS  Google Scholar 

  24. Bonnell, D. A. & Garra, J. Scanning probe microscopy of oxide surfaces: atomic structure and properties. Rep. Prog. Phys. 71, 044501 (2008).

    Article  Google Scholar 

  25. Szot, K. & Speier, W. Surfaces of reduced and oxidized SrTiO3 from atomic force microscopy. Phys. Rev. B 60, 5909–5926 (1999).

    Article  CAS  Google Scholar 

  26. Szot, K., Speier, W., Carius, R., Zastrow, U. & Beyer, W. Localized metallic conductivity and self-healing during thermal reduction of SrTiO3 . Phys. Rev. Lett. 88, 075508 (2002).

    Article  CAS  Google Scholar 

  27. Islam, M. S. Computer modelling of defects and transport in perovskite oxides. Solid State Ionics 154–155, 75–85 (2002).

    Article  Google Scholar 

  28. Jalili, H., Han, J. W., Kuru, Y., Cai, Z. & Yildiz, B. New insights into the strain coupling to surface chemistry, electronic structure, and reactivity of La0.7Sr0.3MnO3 . J. Phys. Chem. Lett. 2, 801–807 (2011).

    Article  CAS  Google Scholar 

  29. Szot, K. et al. Nature of the surface layer in ABO3-type perovskites at elevated temperatures. Appl. Phys. A 62, 335–343 (1996).

    Google Scholar 

  30. Konysheva, E., Blackley, R. & Irvine, J. T. S. Conductivity behavior of composites in the La0.6Sr0.4CoO3±δ–CeO2 system: function of connectivity and interfacial interactions. Chem. Mater. 22, 4700–4711 (2010).

    Article  CAS  Google Scholar 

  31. Kröger, F. A. & Vink, H. J. in Solid State Physics (eds Seitz, F. & Turnbull, D.) Vol. 3, 307–435 (Academic Press, 1956).

  32. Stevenson, J. W., Hallman, P. F., Armstrong, T. R. & Chick, L. A. Sintering behavior of doped lanthanum and yttrium manganite. J. Am. Cer. Soc. 78, 507–512 (1995).

    Article  CAS  Google Scholar 

  33. Tao, S. & Irvine, J. T. S. A redox-stable efficient anode for solid-oxide fuel cells. Nature Mater. 2, 320–323 (2003).

    Article  CAS  Google Scholar 

  34. Boulfrad, S., Cassidy, M., Djurado, E., Irvine, J. T. S. & Jabbour, G. Pre-coating of LSCM perovskite with metal catalyst for scalable high performance anodes. Int. J. Hydrogen Energy. 38, 9519–9524 (2013).

    Article  CAS  Google Scholar 

  35. Chakhmouradian, A. R., Mitchell, R. H. & Burns, P. C. The A-site deficient ordered perovskite Th0.25□0.75NbO3: a re-investigation. J. Alloy Compd. 307, 149–156 (2000).

    Article  CAS  Google Scholar 

  36. Stevenson, J. W. et al. Effect of A-site cation nonstoichiometry on the properties of doped lanthanum gallate. Solid State Ionics 113–115, 571–583 (1998).

    Article  Google Scholar 

  37. Vashook, V., Zosel, J., Preis, W., Sitte, W. & Guth, U. A-deficient chromites–titanates with the perovskite-type structure: synthesis and electrical conductivity. Solid State Ionics 175, 441–444 (2004).

    Article  CAS  Google Scholar 

  38. Slater, P. R., Fagg, D. P. & Irvine, J. T. S. Synthesis and electrical characterisation of doped perovskite titanates as potential anode materials for solid oxide fuel cells. J. Mater. Chem. 7, 2495–2498 (1997).

    Article  CAS  Google Scholar 

  39. Inaguma, Y., Seo, A. & Katsumata, T. Synthesis and lithium ion conductivity of cubic deficient perovskites Sr0.5+xLi0.5–2xxTi0.5Ta0.5O3 and the La-doped compounds. Solid State Ionics 174, 19–26 (2004).

    Article  CAS  Google Scholar 

  40. Konysheva, E. Y., Xu, X. & Irvine, J. T. S. On the existence of A‐site deficiency in perovskites and its relation to the electrochemical performance. Adv. Mater. 24, 528–532 (2012).

    Article  CAS  Google Scholar 

  41. Hansen, K. K. & Hansen, K. V. A-site deficient (La0.6Sr0.4)1−sFe0.8Co0.2O3−δ perovskites as SOFC cathodes. Solid State Ionics 178, 1379–1384 (2007).

    Article  CAS  Google Scholar 

  42. Tsekouras, G., Neagu, D. & Irvine, J. T. S. Step-change in high temperature steam electrolysis performance of perovskite oxide cathodes with exsolution of B-site dopants. Energy Environ. Sci. 6, 256–266 (2012).

    Article  Google Scholar 

  43. Neagu, D. & Irvine, J. T. S. Enhancing electronic conductivity in strontium titanates through correlated A and B-site doping. Chem. Mater. 23, 1607–1617 (2011).

    Article  CAS  Google Scholar 

  44. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976).

    Article  Google Scholar 

  45. Miller, D. N. & Irvine, J. T. S. B-site doping of lanthanum strontium titanate for solid oxide fuel cell anodes. J. Power Sources 196, 7323–7327 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Engineering and Physical Sciences Research Council, Supergen XIV Project Delivery of Sustainable Hydrogen (EP/G01244X/1), and the European Project METSAPP (FCH JU-GA 278257) for funding.

Author information

Authors and Affiliations

Authors

Contributions

D.N. and J.T.S.I. conceived and designed the experiments and analysed the data. D.N. performed the experiments with assistance from G.T. who also contributed to data analysis. D.N.M. collected and interpreted the HRTEM data, and H.M. collected and interpreted the XPS data. D.N. drafted the manuscript and all authors commented on it.

Corresponding authors

Correspondence to Dragos Neagu or John T. S. Irvine.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2012 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neagu, D., Tsekouras, G., Miller, D. et al. In situ growth of nanoparticles through control of non-stoichiometry. Nature Chem 5, 916–923 (2013). https://doi.org/10.1038/nchem.1773

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1773

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing