Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A clamp-like biohybrid catalyst for DNA oxidation

Subjects

This article has been updated

Abstract

In processive catalysis, a catalyst binds to a substrate and remains bound as it performs several consecutive reactions, as exemplified by DNA polymerases. Processivity is essential in nature and is often mediated by a clamp-like structure that physically tethers the catalyst to its (polymeric) template. In the case of the bacteriophage T4 replisome, a dedicated clamp protein acts as a processivity mediator by encircling DNA and subsequently recruiting its polymerase. Here we use this DNA-binding protein to construct a biohybrid catalyst. Conjugation of the clamp protein to a chemical catalyst with sequence-specific oxidation behaviour formed a catalytic clamp that can be loaded onto a DNA plasmid. The catalytic activity of the biohybrid catalyst was visualized using a procedure based on an atomic force microscopy method that detects and spatially locates oxidized sites in DNA. Varying the experimental conditions enabled switching between processive and distributive catalysis and influencing the sliding direction of this rotaxane-like catalyst.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular structures and schematic representation of the concept for a catalytic clamp.
Figure 2: AFM-based method for detecting DNA oxidation.
Figure 3: Octapeptide 3 dictates whether processive or distributive catalysis can take place.
Figure 4: Guiding the direction of the catalytic clamp.
Figure 5: AFM analysis of plasmids oxidized by a guided catalytic clamp.

Similar content being viewed by others

Change history

  • 26 September 2013

    In the version of this Article originally published online, the co-author Tom G. Bloemberg should have been included in affiliation 1 as well as 2. This has now been corrected in all versions of the Article.

References

  1. Breyer, W. A. & Matthews, B. W. A structural basis for processivity. Protein Sci. 10, 1699–1711 (2001).

    Article  CAS  Google Scholar 

  2. Stillman, B. Smart machines at the DNA-replication fork. Cell 78, 725–728 (1994).

    Article  CAS  Google Scholar 

  3. Kovall, R. & Matthews, B. W. Toroidal structure of λ-exonuclease. Science 277, 1824–1827 (1997).

    Article  CAS  Google Scholar 

  4. Benkovic, S. J., Valentine, A. M., & Salinas, F. Replisome-mediated DNA replication. Annu. Rev. Biochem. 70, 181–208 (2001).

    Article  CAS  Google Scholar 

  5. Champoux, J. J. DNA topoisomerases: structure, function, and mechanism. Annu. Rev. Biochem. 70, 369–413 (2001).

    Article  CAS  Google Scholar 

  6. López de Saro, F. J., Georgescu, R. E. & O'Donnell, M. A peptide switch regulates DNA polymerase processivity. Proc. Natl Acad. Sci. USA 100, 14689–14694 (2003).

    Article  Google Scholar 

  7. Indiani, C., McInerney, P., Georgescu, R., Goodman, M. F & O'Donnell, M. A sliding-clamp toolbelt binds high- and low-fidelity DNA polymerases simultaneously. Mol. Cell 19, 805–815 (2005).

    Article  CAS  Google Scholar 

  8. Trakselis, M. A., Alley, S. C., Abel-Santos, E. & Benkovic, S. J. Creating a dynamic picture of the sliding clamp during T4 DNA polymerase holoenzyme assembly by using fluorescence resonance energy transfer. Proc. Natl Acad. Sci. USA 98, 8368–8375 (2001).

    Article  CAS  Google Scholar 

  9. Yang, J., Zhuang, Z., Roccasecca, R. M., Trakselis, M. A. & Benkovic, S. J. The dynamic processivity of the T4 DNA polymerase during replication. Proc. Natl Acad. Sci. USA 101, 8289–8294 (2004).

    Article  CAS  Google Scholar 

  10. Breslow, R. Artificial enzymes. Science 218, 532–537 (1982).

    Article  CAS  Google Scholar 

  11. Murakami, Y., Kikuchi, J., Hisaeda, Y. & Hayashida, O. Artificial enzymes. Chem. Rev. 96, 721–758 (1996).

    Article  CAS  Google Scholar 

  12. Nanda, V. & Koder, R. L. Designing artificial enzymes by intuition and computation. Nature Chem. 2, 15–24 (2010).

    Article  CAS  Google Scholar 

  13. Takashima, Y., Osaki, M., Ishimaru, Y., Yamaguchi, H. & Harada, A. Artificial molecular clamp: a novel device for synthetic polymerases. Angew. Chem. Int. Ed. 50, 7524–7528 (2011).

    Article  CAS  Google Scholar 

  14. Thordarson, P., Bijsterveld, E. J., Rowan, A. E. & Nolte, R. J. Epoxidation of polybutadiene by a topologically linked catalyst. Nature 424, 915–918 (2003).

    Article  CAS  Google Scholar 

  15. Coumans, R. G. E., Elemans, J., Nolte, R. J. M. & Rowan, A. E. Processive enzyme mimic: kinetics and thermodynamics of the threading and sliding process. Proc. Natl Acad. Sci. USA 103, 19647–19651 (2006).

    Article  CAS  Google Scholar 

  16. Monnereau, C. et al. Porphyrin macrocyclic catalysts for the processive oxidation of polymer substrates. J. Am. Chem. Soc. 132, 1529–1531 (2010).

    Article  CAS  Google Scholar 

  17. Meunier, B. Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage. Chem. Rev. 92, 1411–1456 (1992).

    Article  CAS  Google Scholar 

  18. Pratviel, G., Bernadou, J. & Meunier, B. DNA and RNA cleavage by metal complexes. Adv. Inorg. Chem. 45, 251–312 (1998).

    Article  CAS  Google Scholar 

  19. Bernadou, J. & Meunier, B. Biomimetic chemical catalysts in the oxidative activation of drugs. Adv. Synth. Catal. 346, 171–184 (2004).

    Article  CAS  Google Scholar 

  20. Berdis, A., Soumillion, P. & Benkovic, S. The carboxyl terminus of the bacteriophage T4 DNA polymerase is required for holoenzyme complex formation. Proc. Natl Acad. Sci. USA 93, 12822–12827 (1996).

    Article  CAS  Google Scholar 

  21. Zhuang, Z. H., Berdis, A. J. & Benkovic, S. J. An alternative clamp loading pathway via the T4 clamp loader gp44/62–DNA complex. Biochemistry 45, 7976–7989 (2006).

    Article  CAS  Google Scholar 

  22. Smiley, R. D., Zhuang, Z. H., Benkovic, S. J. & Hammes, G. G. Single-molecule investigation of the T4 bacteriophage DNA polymerase holoenzyme: multiple pathways of holoenzyme formation. 45, 7990–7997 (2006).

  23. Vologodskii, A. V., Lukashin, A. V., Anshelevich, V. V. & Frank-Kamenetskii, M. D. Fluctuations in superhelical DNA. Nucleic Acids Res. 6, 967–982 (1979).

    Article  CAS  Google Scholar 

  24. Freifeld, D. & Trumbo, B. Matching of single-strand breaks to form double-strand breaks in DNA. Biopolymers 7, 681–693 (1969).

    Article  Google Scholar 

  25. Pratviel, G., Duarte, V., Bernadou, J. & Meunier, B. Nonenzymic cleavage and ligation of DNA at a three A•T base pair site. A two-step pseudohydrolysis of DNA. J. Am. Chem. Soc. 115, 7939–7943 (1993).

    Article  CAS  Google Scholar 

  26. Neish, C. S., Martin, I. L., Henderson, R. M. & Edwardson, J. M. Direct visualization of ligand–protein interactions using atomic force microscopy. Br. J. Pharmacol. 135, 1943–1950 (2002).

    Article  CAS  Google Scholar 

  27. Alley, S. C., Abel-Santos, E. & Benkovic, S. J. Tracking sliding clamp opening and closing during bacteriophage T4 DNA polymerase holoenzyme assembly. Biochemistry 39, 3076–3090 (2000).

    Article  CAS  Google Scholar 

  28. Jarvis, T. C., Paul, L. S., Hockensmith, J. W. & Von Hippel, P. H. Structural and enzymatic studies of the T4 DNA replication system. II. ATPase properties of the polymerase accessory protein complex. J. Biol. Chem. 264, 12717–12729 (1989).

    CAS  PubMed  Google Scholar 

  29. Heiter, D. F., Lunnen, K. D. & Wilson, G. G. Site-specific DNA-nicking mutants of the heterodimeric restriction endonuclease R.BbvCI. J. Mol. Biol. 348, 631–640 (2005).

    Article  CAS  Google Scholar 

  30. Nakamura, J. et al. Highly sensitive apurinic/apyrimidinic site assay can detect spontaneous and chemically induced depurination under physiological conditions. Cancer Res. 58, 222–225 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. M. Spiering and Z. Zhuang for their assistance and for useful discussions. We thank M. B. Castells and D. van de Mosselaar for synthetic assistance. This work was supported by the Royal Netherlands Academy of Arts and Sciences (R.J.M.N.), NWO Vici (A.E.R.), a research grant from the European Research Council (ERC-2011-AdG 290886 ALPROS to S.F.M.v.D. and R.J.M.N.) and finance from the Dutch Ministry of Education, Culture and Science (Gravity program 024.001.035).

Author information

Authors and Affiliations

Authors

Contributions

S.J.B. and R.J.M.N. conceived the experiments and A.E.R., R.J.M.N., S.F.M.v.D. and J.C. designed the experiments. J.C. performed the experimental work and was supervised by J.J.L.M.C. K.N. developed the AFM-analysis. M.A.T. and S.W.N. provided expertise on protein design and expression. T.G.B. performed statistical analysis. S.F.M.v.D. performed additional experimental work. J.C., S.F.M.v.D., K.N., T.G.B., A.E.R. and R.J.M.N. analysed and interpreted the results. S.F.M.v.D. and J.C. co-wrote the manuscript and S.J.B., A.E.R., R.J.M.N., K.N., M.A.T., S.W.N. and T.G.B. commented on it.

Corresponding authors

Correspondence to Alan E. Rowan or Roeland J. M. Nolte.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1629 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Dongen, S., Clerx, J., Nørgaard, K. et al. A clamp-like biohybrid catalyst for DNA oxidation. Nature Chem 5, 945–951 (2013). https://doi.org/10.1038/nchem.1752

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1752

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing