Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Component-based syntheses of trioxacarcin A, DC-45-A1 and structural analogues

Abstract

The trioxacarcins are polyoxygenated, structurally complex natural products that potently inhibit the growth of cultured human cancer cells. Here we describe syntheses of trioxacarcin A, DC-45-A1 and structural analogues by late-stage stereoselective glycosylation reactions of fully functionalized, differentially protected aglycon substrates. Key issues addressed in this work include the identification of an appropriate means to activate and protect each of the two 2-deoxysugar components, trioxacarcinose A and trioxacarcinose B, as well as a viable sequencing of the glycosidic couplings. The convergent, component-based sequence we present allows for rapid construction of structurally diverse, synthetic analogues that would be inaccessible by any other means, in amounts required to support biological evaluation. Analogues that arise from the modification of four of five modular components are assembled in 11 steps or fewer. The majority of these are found to be active in antiproliferative assays using cultured human cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Trioxacarcin A and structural relatives.
Figure 2: Syntheses of DC-45-A1 and the trioxacarcinose B-containing monoglycoside 9.
Figure 3: Model studies led to selection of O-acetyl for protection of the 3-hydroxyl group of trioxacarcinose B.
Figure 4: Modular synthesis of trioxacarcin A.
Figure 5: Fully synthetic trioxacarcin analogues.
Figure 6: Rationalizations of the stereochemical outcome of glycosylation reactions with trioxacarcinose A and B donors.

Similar content being viewed by others

References

  1. Tomita, F., Tamaoki, T., Morimoto, M. & Fujimoto, K. Trioxacarcins, novel antitumor antibiotics. I. Producing organism, fermentation and biological activities. J. Antibiot. 34, 1519–1524 (1981).

    Article  CAS  Google Scholar 

  2. Tamaoki, T., Shirahata, K., Iida, T. & Tomita, F. Trioxacarcins, novel antitumor antibiotics. II. Isolation, physicochemical properties and mode of action. J. Antibiot. 34, 1525–1530 (1981).

    Article  CAS  Google Scholar 

  3. Shirahata, K. & Iida, T. Compounds having antibiotic activity, processes for their preparation, pharmaceutical compositions containing them and their use as medicaments. US patent 4,459,291 (1984).

  4. Tomita, F. et al. Antibiotic substances DC-45, and their use as medicaments. US patent 4,511,560 (1985).

  5. Maskey, R. P. et al. Anti-cancer and antibacterial trioxacarcins with high anti-malaria activity from a marine streptomycete and their absolute stereochemistry. J. Antibiot. 57, 771–779 (2004).

    Article  CAS  Google Scholar 

  6. Maskey, R. P., Sevvana, M., Uson, I., Helmke, E. & Laatsch, H. Gutingimycin: a highly complex metabolite from a marine streptomycete. Angew. Chem. Int. Ed. 43, 1281–1283 (2004).

    Article  CAS  Google Scholar 

  7. Pfoh, R., Laatsch, H. & Sheldrick, G. M. Crystal structure of trioxacarcin A covalently bound to DNA. Nucleic Acids Res. 36, 3508–3514 (2008).

    Article  CAS  Google Scholar 

  8. Cassidy, J. et al. Phase I clinical study of LL-D49194α1 with retrospective pharmacokinetic investigations in mice and humans. Cancer Chemother. Pharm. 31, 395–400 (1993).

    Article  CAS  Google Scholar 

  9. Gerber, H-P., Koehn, F. E. & Abraham, R. T. The antibody–drug conjugate: an enabling modality for natural product-based cancer therapeutics. Nat. Prod. Rep. 30, 625–639 (2013).

    Article  CAS  Google Scholar 

  10. Švenda, J., Hill, N. & Myers, A. G. A multiply convergent platform for the synthesis of trioxacarcins. Proc. Natl Acad. Sci. USA 108, 6709–6714 (2011).

    Article  Google Scholar 

  11. Myers, A. G., Gin, D. Y. & Rogers, D. H. Synthetic studies of the tunicamycin antibiotics. Preparation of (+)-tunicaminyluracil, (+)-tunicamycin-V, and 5′-epitunicamycin-V. J. Am. Chem. Soc. 116, 4697–4718 (1994).

    Article  CAS  Google Scholar 

  12. Maiese, W. M. et al. LL-D49194 antibiotics, a novel family of antitumor agents: taxonomy, fermentation and biological properties. J. Antibiot. 43, 253–258 (1990).

    Article  CAS  Google Scholar 

  13. Smaltz, D. J., Švenda, J. & Myers, A. G. Diastereoselective additions of allylmetal reagents to free and protected syn-α,β-dihydroxyketones enable efficient synthetic routes to methyl trioxacarcinoside A. Org. Lett. 14, 1812–1815 (2012).

    Article  CAS  Google Scholar 

  14. Magauer, T. & Myers, A. G. Short and efficient synthetic route to methyl α-trioxacarcinoside B and anomerically activated derivatives. Org. Lett. 13, 5584–5587 (2011).

    Article  CAS  Google Scholar 

  15. Mathieu, B. & Ghosez, L. N-trimethylsilyl-bis(trifluoromethanesulfonyl)imide: a better carbonyl activator than trimethylsilyl triflate. Tetrahedron Lett. 38, 5497–5500 (1997).

    Article  CAS  Google Scholar 

  16. Kimura, Y., Suzuki, M., Matsumoto, T., Abe, R. & Terashima, S. Trimethylsilyl trifluoromethanesulfonate (trimethylsilyl triflate) as an excellent glycosidation reagent for anthracycline synthesis: simple and efficient synthesis of optically pure 4-demethoxydaunorubicin. Chem. Lett. 4, 501–504 (1984).

    Article  Google Scholar 

  17. Kimura, Y., Suzuki, M., Matsumoto, T., Abe, R. & Terashima, S. Novel glycosidation of 4-demethoxyanthracyclinones by the use of trimethylsilyl triflate. Syntheses of optically-active 4-demethoxydaunorubicin and 4-demethoxyadriamycin. B. Chem. Soc. Jpn 59, 423–431 (1986).

    Article  CAS  Google Scholar 

  18. Lear, M. J., Yoshimura, F. & Hirama, M. A direct and efficient α-selective glycosylation protocol for the kedarcidin sugar, L-mycarose: AgPF6 as a remarkable activator of 2-deoxythioglycosides. Angew. Chem. Int. Ed. 40, 946–949 (2001).

    Article  CAS  Google Scholar 

  19. Ren, F., Hogan, P. C., Anderson, A. J. & Myers, A. G. Kedarcidin chromophore: synthesis of its proposed structure and evidence for a stereochemical revision. J. Am. Chem. Soc. 129, 5381–5383 (2007).

    Article  CAS  Google Scholar 

  20. Shirahata, K., Iida, T. & Hirayama, N. Symposium on the Chemistry of Natural Products 24, 199–206 (1981).

    Google Scholar 

  21. Boyd, M. R. & Pauli, K. D. Some practical considerations and applications of the National Cancer Institute in vitro anticancer drug discovery screen. Drug. Develop. Res. 34, 91–109 (1995).

    Article  CAS  Google Scholar 

  22. Romero, J. A. C., Tabacco, S. A. & Woerpel, K. A. Stereochemical reversal of nucleophilic substitution reactions depending upon substituent: reactions of heteroatom-substituted six-membered-ring oxocarbenium ions through pseudoaxial conformers. J. Am. Chem. Soc. 122, 168–169 (2000).

    Article  CAS  Google Scholar 

  23. Ayala, L., Lucero, C. G., Romero, J. A. C., Tabacco, S. A. & Woerpel, K. A. Stereochemistry of nucleophilic substitution reactions depending upon substituent: evidence for electrostatic stabilization of pseudoaxial conformers of oxocarbenium ions by heteroatom substituents. J. Am. Chem. Soc. 125, 15521–15528 (2003).

    Article  CAS  Google Scholar 

  24. Chamberland, S., Ziller, J. W. & Woerpel, K. A. Structural evidence that alkoxy substituents adopt electronically preferred pseudoaxial orientations in six-membered ring dioxocarbenium ions. J. Am. Chem. Soc. 127, 5322–5323 (2005).

    Article  CAS  Google Scholar 

  25. Yang, M. T. & Woerpel, K. A. The effect of electrostatic interactions on conformational equilibria of multiply substituted tetrahydropyran oxocarbenium ions. J. Org. Chem. 74, 545–553 (2009).

    Article  CAS  Google Scholar 

  26. Pedersen, C. M., Nordstrøm, L. U. & Bols, M. ‘Super armed’ glycosyl donors: conformational arming of thioglycosides by silylation. J. Am. Chem. Soc. 129, 9222–9235 (2007).

    Article  CAS  Google Scholar 

  27. Crich, D., Hu, T. & Cai, F. Does neighboring group participation by non-vicinal esters play a role in glycosylation reactions? Effective probes for the detection of bridging intermediates J. Org. Chem. 73, 8942–8953 (2008).

    Article  CAS  Google Scholar 

  28. Wiesner, K., Tsai, T. Y. R. & Jin, H. On cardioactive steroids. XVI. Stereoselective β-glycosylation of digitoxose: the synthesis of digitoxin. Helv. Chim. Acta 68, 300–314 (1985).

    Article  CAS  Google Scholar 

  29. Fitzner, A., Frauendorf, H., Laatsch, H. & Diederichsen, U. Formation of gutingimycin: analytical investigation of trioxacarcin A-mediated alkylation of dsDNA. Anal. Bioanal. Chem. 390, 1139–1147 (2008).

    Article  CAS  Google Scholar 

  30. Sun, C. et al. A robust platform for the synthesis of new tetracycline antibiotics. J. Am. Chem. Soc. 130, 17913–17927 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

T.M. acknowledges the Austrian Science Fund for a Schrödinger postdoctoral fellowship (FWF J3000-B11). D.J.S. acknowledges the Department of Defense for a National Defense Science and Engineering Graduate Fellowship. Financial support from the National Institutes of Health (Grant CA047148) is acknowledged. We thank M. Shair for discussions. We thank A. Schumacher for assistance in the preparation of compounds 27 and 28, as detailed in the Supplementary Information. We acknowledge a gift of authentic samples of trioxacarcin A and DC-45-A1 from research scientists at Pfizer Research and Development in Groton, Connecticut, as well as a gift of an authentic sample of trioxacarcin A from G. Sheldrick at Universität Göttingen.

Author information

Authors and Affiliations

Authors

Contributions

T.M., D.J.S. and A.G.M. conceived the synthetic route. T.M. and D.J.S. conducted all experimental work and analysed the results. T.M., D.J.S. and A.G.M. wrote the manuscript.

Corresponding author

Correspondence to Andrew G. Myers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magauer, T., Smaltz, D. & Myers, A. Component-based syntheses of trioxacarcin A, DC-45-A1 and structural analogues. Nature Chem 5, 886–893 (2013). https://doi.org/10.1038/nchem.1746

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1746

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing