Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Filamin is essential in actin cytoskeletal assembly mediated by p21-activated kinase 1

Abstract

The serine/threonine kinase p21-activated kinase 1 (Pak1) controls the actin cytoskeletal and ruffle formation through mechanisms that are independent of GTPase activity. Here we identify filamin FLNa as a Pak1-interacting protein through a yeast two-hybrid screen using the amino terminus of Pak1 as a bait. FLNa is stimulated by physiological signalling molecules to undergo phosphorylation by Pak1 and to interact and colocalize with endogenous Pak1 in membrane ruffles. The ruffle-forming activity of Pak1 is functional in FLNa-expressing cells but not in FLNa-deficient cells. In FLNa, the Pak1-binding site involves tandem repeat 23 in the carboxyl terminus and phosphorylation takes place on serine 2152. The FLNa-binding site in Pak1 is localized between amino acids 52 and 132 in the conserved Cdc42/Rac-interacting (CRIB) domain; accordingly, FLNa binding to the CRIB domain stimulates Pak1 kinase activity. Our results indicate that FLNa may be essential for Pak1-induced cytoskeletal reorganization and that the two-way regulatory interaction between Pak1 and FLNa may contribute to the local stimulation of Pak1 activity and its targets in cytoskeletal structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of FLNa as a Pak1-binding protein.
Figure 2: Physiological signals induce Pak1 and FLNa colocalization in ruffles.
Figure 3: FLNa is substrate of Pak1.
Figure 4: Pak1-mediated ruffle formation requires FLNa.
Figure 5: FLNa is required for kinase-active Pak1-induced ruffle formation.
Figure 6: Location of the interaction domains of Pak1 and FLNa.
Figure 7: FLNa regulation of Pak1 activity.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998).

    Article  CAS  Google Scholar 

  2. Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D. & Hall, A. The small GTP-binding protein Rac regulates growth factor-induced membrane ruffling. Cell 70, 401–410 (1992).

    Article  CAS  Google Scholar 

  3. Kozma, R., Ahmed, S., Best, A. & Lim, L. The GTPase-activating protein n-chimaerin cooperates with Rac1 and Cdc42Hs to induce the formation of lamellipodia and filopodia. Mol. Cell. Biol. 16, 5069–5080 (1996).

    Article  CAS  Google Scholar 

  4. Bishop, A. L. & Hall, A. Rho GTPases and their effector proteins. Biochem. J. 348, 241–255 (2000).

    Article  CAS  Google Scholar 

  5. Manser, E., Leung, T., Salihuddin, H., Zhao, Z. S. & Lim, L. A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 367, 40–46 (1994).

    Article  CAS  Google Scholar 

  6. Sells, M. A. et al. Human p21-activated kinase (Pak1) regulates actin organization in mammalian cells. Curr. Biol. 7, 202–210 (1997).

    Article  CAS  Google Scholar 

  7. Daniels, R. H. & Bokoch, G. M. p21-activated protein kinase: a crucial component of morphological signaling? Trends Biochem. Sci. 24, 350–355 (1999).

    Article  CAS  Google Scholar 

  8. Zhao, Z. S. et al. A conserved negative regulatory region in αPAK: inhibition of PAK kinases reveals their morphological roles downstream of Cdc42 and Rac1. Mol. Cell. Biol. 18, 2153–2163 (1998).

    Article  CAS  Google Scholar 

  9. Manser, E. et al. Expression of constitutively active α-PAK reveals effects of the kinase on actin and focal complexes. Mol. Cell. Biol. 17, 1129–1143 (1997).

    Article  CAS  Google Scholar 

  10. Dharmawardhane, S., Sanders, L. C., Martin, S. S., Daniels, R. H. & Bokoch, G. M. Localization of p21-activated kinase 1 (PAK1) to pinocytic vesicles and cortical actin structures in stimulated cells. J. Cell Biol. 138, 1265–1278 (1997).

    Article  CAS  Google Scholar 

  11. Turner, C. E. et al. Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankyrin repeat, ARF-GAP protein: a role in cytoskeletal remodeling. J. Cell Biol. 145, 851–863 (1999).

    Article  CAS  Google Scholar 

  12. Frost, J. A., Khokhlatchev, A., Stippec, S., White, M. A. & Cobb, M. H. Differential effects of PAK1-activating mutations reveal activity-dependent and -independent effects on cytoskeletal regulation. J. Biol. Chem. 273, 28191–28198 (1998).

    Article  CAS  Google Scholar 

  13. Edwards, D. C., Sanders, L. C., Bokoch, G. M. & Gill, G. N. Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signaling to actin cytoskeletal dynamics. Nature Cell Biol. 1, 253–259 (1999).

    Article  CAS  Google Scholar 

  14. Rivero, F. et al. The role of the cortical cytoskeleton: F-actin crosslinking proteins protect against osmotic stress, ensure cell size, cell shape and motility, and contribute to phagocytosis and development. J. Cell Sci. 109, 2679–2691 (1996).

    CAS  PubMed  Google Scholar 

  15. Stossel, T. P. et al. Filamins as integrators of cell mechanics and signalling. Nature Rev. Mol. Cell Biol. 2, 138–145 (2001).

    Article  CAS  Google Scholar 

  16. Ohta, Y. & Hartwig, J. H. Phosphorylation of actin-binding protein 280 by growth factors is mediated by p90 ribosomal protein S6 kinase. J. Biol. Chem. 271, 11858–11864 (1996).

    Article  CAS  Google Scholar 

  17. Gorlin, J. B. et al. Human endothelial actin-binding protein (ABP-280, nonmuscle filamin): a molecular leaf spring. J. Cell Biol. 111, 1089–1105 (1990).

    Article  CAS  Google Scholar 

  18. Weihing, R. R. Actin-binding and dimerization domains of HeLa cell filamin. Biochemistry 27, 1865–1869 (1988).

    Article  CAS  Google Scholar 

  19. Cunningham, C. C. et al. Actin-binding protein requirement for cortical stability and efficient locomotion. Science 255, 325–327 (1992).

    Article  CAS  Google Scholar 

  20. Fox, J. W. et al. Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia. Neuron 21, 1315–1325 (1998).

    Article  CAS  Google Scholar 

  21. Tao, W., Pennica, D., Xu, L., Kalejta, R. F. & Levine, A. J. Wrch-1, a novel member of the Rho gene family that is regulated by Wnt-1. Genes Dev. 15, 1796–1807 (2001).

    Article  CAS  Google Scholar 

  22. Adam, L. et al. Heregulin regulates cytoskeletal reorganization and cell migration through the p21-activated kinase-1 via phosphatidylinositol-3 kinase. J. Biol. Chem. 273, 28238–28246 (1998).

    Article  CAS  Google Scholar 

  23. Vadlamudi, R. K. et al. Regulatable expression of p21-activated kinase-1 promotes anchorage-independent growth and abnormal organization of mitotic spindles in human epithelial breast cancer cells. J. Biol. Chem. 275, 36238–36244 (2000).

    Article  CAS  Google Scholar 

  24. Bokoch, G. M. et al. A GTPase-independent mechanism of p21-activated kinase activation. Regulation by sphingosine and other biologically active lipids. J. Biol. Chem. 273, 8137–8144 (1998).

    Article  CAS  Google Scholar 

  25. Bagheri,Y. et al. Etk/Bmx tyrosine kinase activates Pak1 and regulates tumorigenicity of breast cancer cells. J. Biol. Chem. 276, 29403–29409 (2001).

    Article  Google Scholar 

  26. Nishiyama, T. et al. Rac p21 is involved in insulin-induced membrane ruffling and Rho p21 is involved in hepatocyte growth factor- and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced membrane ruffling in KB cells. Mol. Cell. Biol. 14, 2447–2456 (1994).

    Article  CAS  Google Scholar 

  27. Bagrodia, S. & Cerione, R. A. Pak to the future. Trends Cell Biol. 9, 350–355 (1999).

    Article  CAS  Google Scholar 

  28. Adam, l., Vadlamudi, R., Mandal, M., Chernoff, J. & Kumar, R. Regulation of microfilament reorganization and invasiveness of breast cancer cells by kinase dead p21-activated kinase 1. J. Biol. Chem. 275, 12041–12050 (2000).

    Article  CAS  Google Scholar 

  29. Marti, A. et al. Actin-binding protein-280 binds the stress-activated protein kinase (SAPK) activator SEK-1 and is required for tumor necrosis factor-α activation of SAPK in melanoma cells. J. Biol. Chem. 272, 2620–2628 (1997).

    Article  CAS  Google Scholar 

  30. Stahlhut, M. & van Deurs, B. Identification of filamin as a novel ligand for caveolin-1: evidence for the organization of caveolin-1-associated membrane domains by the actin cytoskeleton. Mol. Biol. Cell 11, 325–337 (2000).

    Article  CAS  Google Scholar 

  31. Chan, W. H., Yu, J. S. & Yang, S. D. PAK2 is cleaved and activated during hyperosmotic shock-induced apoptosis via a caspase-dependent mechanism: evidence for the involvement of oxidative stress. J. Cell Physiol. 178, 397–408 (1999).

    Article  CAS  Google Scholar 

  32. Ohta, Y., Suzuki, N., Nakamura, S., Hartwig, J. H. & Stossel, T. P. The small GTPase RalA targets filamin to induce filopodia. Proc. Natl Acad. Sci. USA 96, 2122–2128 (1999).

    Article  CAS  Google Scholar 

  33. Sells, M. A., Pfaff, A. & Chernoff, J. Temporal and spatial distribution of activated Pak1 in fibroblasts. J. Cell Biol. 151, 1449–1458 (2000).

    Article  CAS  Google Scholar 

  34. Kumar, R. et al. A naturally occurring MTA1 variant sequesters estrogen receptor-α in the cytoplasm. Nature 418, 654–657 (2002).

    Article  CAS  Google Scholar 

  35. Mazumdar, A. et al. Transcriptional repression of estrogen receptor by metastasis-associated protein 1 corepressor, a component of histone deacetylase and nucleosome remodelling complexes. Nature Cell Biol. 3, 30–37 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kumar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary figures

Figure S1 (PDF 187 kb)

Figure S2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vadlamudi, R., Li, F., Adam, L. et al. Filamin is essential in actin cytoskeletal assembly mediated by p21-activated kinase 1. Nat Cell Biol 4, 681–690 (2002). https://doi.org/10.1038/ncb838

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb838

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing