Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Isoform diversity in the Arp2/3 complex determines actin filament dynamics

Abstract

The Arp2/3 complex consists of seven evolutionarily conserved subunits (Arp2, Arp3 and ARPC1–5) and plays an essential role in generating branched actin filament networks during many different cellular processes. In mammals, however, the ARPC1 and ARPC5 subunits are each encoded by two isoforms that are 67% identical. This raises the possibility that Arp2/3 complexes with different properties may exist. We found that Arp2/3 complexes containing ARPC1B and ARPC5L are significantly better at promoting actin assembly than those with ARPC1A and ARPC5, both in cells and in vitro. Branched actin networks induced by complexes containing ARPC1B or ARPC5L are also disassembled 2-fold slower than those formed by their counterparts. This difference reflects the ability of cortactin to stabilize ARPC1B- and ARPC5L- but not ARPC1A- and ARPC5-containing complexes against coronin-mediated disassembly. Our observations demonstrate that the Arp2/3 complex in higher eukaryotes is actually a family of complexes with different properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of multiple Arp2/3 complexes.
Figure 2: Vaccinia actin tail length depends on Arp2/3 subunit composition.
Figure 3: Isoform composition affects the activity of the Arp2/3 complex.
Figure 4: ARPC1B and ARPC5L induce more stable actin networks.
Figure 5: Coronin 1B and 1C promote actin tail disassembly.
Figure 6: Coronin and cortactin have different actin tail localizations.
Figure 7: Cortactin differentially regulates the stability of Arp2/3 branches.

Similar content being viewed by others

References

  1. Machesky, L. M., Atkinson, S. J., Ampe, C., Vandekerckhove, J. & Pollard, T. D. Purification of a cortical complex containing two unconventional actins from Acanthamoeba by affinity chromatography on profilin-agarose. J. Cell Biol. 127, 107–115 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Beltzner, C. C. & Pollard, T. D. Identification of functionally important residues of Arp2/3 complex by analysis of homology models from diverse species. J. Mol. Biol. 336, 551–565 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Goley, E. D. & Welch, M. D. The ARP2/3 complex: an actin nucleator comes of age. Nat. Rev. Mol. Cell Biol. 7, 713–726 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Svitkina, T. M. & Borisy, G. G. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol. 145, 1009–1026 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vinzenz, M. et al. Actin branching in the initiation and maintenance of lamellipodia. J. Cell Sci. 125, 2775–2785 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Mullins, D. R., Heuser, J. A. & Pollard, T. D. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc. Natl Acad. Sci. USA 95, 6181–6186 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Blanchoin, L. et al. Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins. Nature 404, 1007–1011 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Welch, M. D., Rosenblatt, J., Skoble, J., Portnoy, D. A. & Mitchison, T. J. Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. Science 281, 105–108 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Welch, M. D. & Way, M. Arp2/3-mediated actin-based motility: a tail of pathogen abuse. Cell Host Microbe 14, 242–255 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rottner, K., Hanisch, J. & Campellone, K. G. WASH, WHAMM and JMY: regulation of Arp2/3 complex and beyond. Trends Cell Biol. 20, 650–661 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Campellone, K. G. & Welch, M. D. A nucleator arms race: cellular control of actin assembly. Nat. Rev. Mol. Cell Biol. 11, 237–251 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Egile, C. et al. Activation of the Cdc42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. J. Cell Biol. 146, 1319–1332 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Le Clainche, C., Didry, D., Carlier, M. F. & Pantaloni, D. Activation of Arp2/3 complex by Wiskott-Aldrich Syndrome protein is linked to enhanced binding of ATP to Arp2. J. Biol. Chem. 276, 46689–46692 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Marchand, J. B., Kaiser, D. A., Pollard, T. D. & Higgs, H. N. Interaction of WASP/Scar proteins with actin and vertebrate Arp2/3 complex. Nat. Cell Biol. 3, 76–82 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Panchal, S. C., Kaiser, D. A., Torres, E., Pollard, T. D. & Rosen, M. K. A conserved amphipathic helix in WASP/Scar proteins is essential for activation of Arp2/3 complex. Nat. Struct. Biol. 10, 591–598 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Chereau, D. et al. Actin-bound structures of Wiskott-Aldrich syndrome protein (WASP)-homology domain 2 and the implications for filament assembly. Proc. Natl Acad. Sci. USA 102, 16644–16649 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Co, C., Wong, D. T., Gierke, S., Chang, V. & Taunton, J. Mechanism of actin network attachment to moving membranes: barbed end capture by N-WASP WH2 domains. Cell 128, 901–913 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Weed, S. A. et al. Cortactin localization to sites of actin assembly in lamellipodia requires interactions with F-actin and the Arp2/3 complex. J. Cell Biol. 151, 29–40 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Uruno, T. et al. Activation of Arp2/3 complex-mediated actin polymerization by cortactin. Nat. Cell Biol. 3, 259–266 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Weaver, A. M. et al. Cortactin promotes and stabilizes Arp2/3-induced actin filament network formation. Curr. Biol. 11, 370–374 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Kirkbride, K. C., Sung, B. H., Sinha, S. & Weaver, A. M. Cortactin: a multifunctional regulator of cellular invasiveness. Cell Adhes. Migr. 5, 187–198 (2011).

    Article  Google Scholar 

  22. Helgeson, L. A. & Nolen, B. J. Mechanism of synergistic activation of Arp2/3 complex by cortactin and N-WASP. eLife 2, e00884 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Egile, C. et al. Mechanism of filament nucleation and branch stability revealed by the structure of the Arp2/3 complex at actin branch junctions. PLoS Biol. 3, e383 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Siton, O. et al. Cortactin releases the brakes in actin-based motility by enhancing WASP-VCA detachment from Arp2/3 branches. Curr. Biol. 21, 2092–2097 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Helgeson, L. A., Prendergast, J. G., Wagner, A. R., Rodnick-Smith, M. & Nolen, B. J. Interactions with actin monomers, actin filaments, and Arp2/3 complex define the roles of WASP family proteins and cortactin in coordinately regulating branched actin networks. J. Biol. Chem. 289, 28856–28869 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cai, L., Makhov, A. M., Schafer, D. A. & Bear, J. E. Coronin 1B antagonizes cortactin and remodels Arp2/3-containing actin branches in lamellipodia. Cell 134, 828–842 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chan, K. T., Creed, S. J. & Bear, J. E. Unraveling the enigma: progress towards understanding the coronin family of actin regulators. Trends Cell Biol. 21, 481–488 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cai, L., Marshall, T. W., Uetrecht, A. C., Schafer, D. A. & Bear, J. E. Coronin 1B coordinates Arp2/3 complex and cofilin activities at the leading edge. Cell 128, 915–929 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jansen, S. et al. Single-molecule imaging of a three-component ordered actin disassembly mechanism. Nat. Commun. 6, 7202 (2015).

    Article  PubMed  Google Scholar 

  30. Jay, P. et al. ARP3β, the gene encoding a new human actin-related protein, is alternatively spliced and predominantly expressed in brain neuronal cells. Eur. J. Biochem. 267, 2921–2928 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Balasubramanian, M. K., Feoktistova, A., McCollum, D. & Gould, K. L. Fission yeast Sop2p: a novel and evolutionarily conserved protein that interacts with Arp3p and modulates profilin function. EMBO J. 15, 6426–6437 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Millard, T. H., Behrendt, B., Launay, S., Futterer, K. & Machesky, L. M. Identification and characterisation of a novel human isoform of Arp2/3 complex subunit p16-ARC/ARPC5. Cell Motil. Cytoskeleton 54, 81–90 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Robinson, R. C. et al. Crystal structure of Arp2/3 complex. Science 294, 1679–1684 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Steffen, A. et al. Filopodia formation in the absence of functional WAVE- and Arp2/3-complexes. Mol. Biol. Cell 17, 2581–2591 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Suraneni, P. et al. The Arp2/3 complex is required for lamellipodia extension and directional fibroblast cell migration. J. Cell Biol. 197, 239–251 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Frischknecht, F. et al. Actin based motility of vaccinia virus mimics receptor tyrosine kinase signalling. Nature 401, 926–929 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Snapper, S. B. et al. N-WASP deficiency reveals distinct pathways for cell surface projections and microbial actin-based motility. Nat. Cell Biol. 3, 897–904 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Weisswange, I., Newsome, T. P., Schleich, S. & Way, M. The rate of N-WASP exchange limits the extent of ARP2/3-complex-dependent actin-based motility. Nature 458, 87–91 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Humphries, A. C. et al. Clathrin potentiates vaccinia-induced actin polymerization to facilitate viral spread. Cell Host Microbe 12, 346–359 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Donnelly, S. K., Weisswange, I., Zettl, M. & Way, M. WIP provides an essential link between Nck and N-WASP during Arp2/3-dependent actin polymerization. Curr. Biol. 23, 999–1006 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Humphries, A. C., Donnelly, S. K. & Way, M. Cdc42 and the Rho GEF intersectin-1 collaborate with Nck to promote N-WASP-dependent actin polymerisation. J. Cell Sci. 127, 673–685 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Le Clainche, C., Pantaloni, D. & Carlier, M. F. ATP hydrolysis on actin-related protein 2/3 complex causes debranching of dendritic actin arrays. Proc. Natl Acad. Sci. USA 100, 6337–6342 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rosenblatt, J., Agnew, B. J., Abe, H., Bamburg, J. R. & Mitchison, T. J. Xenopus actin depolymerizing factor/cofilin (XAC) is responsible for the turnover of actin filaments in Listeria monocytogenes tails. J. Cell Biol. 136, 1323–1332 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Carlier, M.-F. et al. Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J. Cell Biol. 136, 1307–1323 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brieher, W. M., Kueh, H. Y., Ballif, B. A. & Mitchison, T. J. Rapid actin monomer-insensitive depolymerization of Listeria actin comet tails by cofilin, coronin, and Aip1. J. Cell Biol. 175, 315–324 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mueller, J. et al. Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion. PLoS Biol. 12, e1001765 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Xu, X. P. et al. Three-dimensional reconstructions of Arp2/3 complex with bound nucleation promoting factors. EMBO J. 31, 236–247 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Frischknecht, F. & Way, M. Surfing pathogens and the lessons learned for actin polymerization. Trends Cell Biol. 11, 30–38 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Lai, F. P. et al. Arp2/3 complex interactions and actin network turnover in lamellipodia. EMBO J. 27, 982–992 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Boczkowska, M. et al. X-ray scattering study of activated Arp2/3 complex with bound actin-WCA. Structure 16, 695–704 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Padrick, S. B., Doolittle, L. K., Brautigam, C. A., King, D. S. & Rosen, M. K. Arp2/3 complex is bound and activated by two WASP proteins. Proc. Natl Acad. Sci. USA 108, E472–E479 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ti, S. C., Jurgenson, C. T., Nolen, B. J. & Pollard, T. D. Structural and biochemical characterization of two binding sites for nucleation-promoting factor WASp-VCA on Arp2/3 complex. Proc. Natl Acad. Sci. USA 108, E463–E471 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Boczkowska, M., Rebowski, G., Kast, D. J. & Dominguez, R. Structural analysis of the transitional state of Arp2/3 complex activation by two actin-bound WCAs. Nature Commun. 5, 3308 (2014).

    Article  CAS  Google Scholar 

  54. Zalevsky, J., Lempert, L., Kranitz, H. & Mullins, R. D. Different WASP family proteins stimulate different Arp2/3 complex-dependent actin-nucleating activities. Curr. Biol. 11, 1903–1913 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Volkmann, N. et al. Structure of Arp2/3 complex in its activated state and in actin filament branch junctions. Science 293, 2456–2459 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Rouiller, I. et al. The structural basis of actin filament branching by the Arp2/3 complex. J. Cell Biol. 180, 887–895 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Uruno, T., Liu, J., Li, Y., Smith, N. & Zhan, X. Sequential interaction of actin-related proteins 2 and 3 (Arp2/3) complex with neural Wiscott-Aldrich syndrome protein (N-WASP) and cortactin during branched actin filament network formation. J. Biol. Chem. 278, 26086–26093 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Smith, B. A. et al. Three-color single molecule imaging shows WASP detachment from Arp2/3 complex triggers actin filament branch formation. eLife 2, e01008 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hiller, G. & Weber, K. Golgi-derived membranes that contain an acylated viral polypeptide are used for vaccinia virus envelopment. J. Virol. 55, 651–659 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Cai, L., Holoweckyj, N., Schaller, M. D. & Bear, J. E. Phosphorylation of coronin 1B by protein kinase C regulates interaction with Arp2/3 and cell motility. J. Biol. Chem. 280, 31913–31923 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Chan, K. T., Roadcap, D. W., Holoweckyj, N. & Bear, J. E. Coronin 1C harbours a second actin-binding site that confers co-operative binding to F-actin. Biochem. J. 444, 89–96 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Arakawa, Y., Cordeiro, J. V., Schleich, S., Newsome, T. & Way, M. The release of vaccinia virus from infected cells requires RhoA-mDia modulation of cortical actin. Cell Host Microbe 1, 227–240 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Welman, A., Serrels, A., Brunton, V. G., Ditzel, M. & Frame, M. C. Two-color photoactivatable probe for selective tracking of proteins and cells. J. Biol. Chem. 285, 11607–11616 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fitzgerald, D. J. et al. Protein complex expression by using multigene baculoviral vectors. Nat. Methods 3, 1021–1032 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Goley, E. D., Rodenbusch, S. E., Martin, A. C. & Welch, M. D. Critical conformational changes in the Arp2/3 complex are induced by nucleotide and nucleation promoting factor. Mol. Cell 16, 269–279 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Pernier, J. et al. Dimeric WH2 domains in Vibrio VopF promote actin filament barbed-end uncapping and assisted elongation. Nat. Struct. Mol. Biol. 20, 1069–1076 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Churchman, L. S., Okten, Z., Rock, R. S., Dawson, J. F. & Spudich, J. A. Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time. Proc. Natl Acad. Sci. USA 102, 1419–1423 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sbalzarini, I. F. & Koumoutsakos, P. Feature point tracking and trajectory analysis for video imaging in cell biology. J. Struct. Biol. 151, 182–195 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank members of the Way laboratory, R. Treisman (The Francis Crick Institute) and H. Walden (University of Dundee) for comments on the manuscript, M. Howell (The Francis Crick Institute) for his helpful discussions, J. Cockburn (University of Leeds) for his structural insights into Arp2/3, R. George (The Francis Crick Institute) for his help with Arp2/3 purification, and B. Wharam for his contribution to this project during his summer studentship. We would like to thank J. Bear (University of North Carolina, Chapel Hill, USA) for coronin antibodies, I. Berger (University of Bristol, UK) for the pFL vector, and E. Benanti and M. Welch (University of California, Berkeley, USA) for helpful discussions concerning production of recombinant Arp2/3. This work was supported by Cancer Research UK (C.G. and M.W.) and by postdoctoral fellowships from FRQS (Fonds de recherche du Québec - Santé), EMBO and the Canadian Institutes of Health Research (CIHR) to J.V.G.A. M.-F.C. was supported by ERC advanced grant no. 249982 and FP7 241548.

Author information

Authors and Affiliations

Authors

Contributions

J.V.G.A. and M.W. designed the study and wrote the manuscript. J.V.G.A. performed and analysed the experiments with help from C.G. S.K. purified the recombinant Arp2/3 complexes. D.J.B. provided quantitative analysis of protein localizations in actin tails. J.P. performed the in vitro actin assays with input from M.-F.C. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Michael Way.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 HeLa cells express both isoforms of ARPC1 and ARPC5.

(A) Sequence alignment of human ARPC5 (NP_005708.1) and ARPC5L (NP_112240.1) (top) and ARPC1A (NP_ 006400.2) and ARPC1B (NP_005711.1) (bottom). Pink lines denote residues that are not present in the bovine crystal structure (PDB 1K8K), green line denotes residues involved in the interface between ARPC5 and Arp2. (B) Isoform specific antibodies do not cross react with the opposite endogenous (upper panels) or GFP-tagged (lower panels) ARPC1 or ARPC5 isoforms in HeLa cells. (C) The graphs show the relative abundance of the different ARPC1 or ARPC5 isoforms in a panel of cell lines normalized to their own ARPC2 levels relative to HeLa cells. Error bars represent s.e.m. from n = 3 independent experiments. (D) Immunoblot analysis of HeLa cells treated with siRNA against ARPC2 results in concomitant loss of all other complex subunits.

Supplementary Figure 2 ARPC1 and ARPC5 isoforms differentially affect actin tail lengths.

(a) Immunofluorescent images from which insets in Fig. 2b were taken. An image of a HeLa cell treated with siRNA against ARPC2 is also included. The virus is labelled in green and actin (phalloidin) in red. Scale bar is 10 μm. (B) Quantification of actin tail lengths of individual siRNA oligonucleotides from the siGenome pools against ARPC5, ARPC5L, ARPC1A and ARPC1B used in Fig. 2. Data from 3 independent experiments were combined and error bars represent s.e.m. from n = 360 tails. (C) Immunoblot analysis of RNAi treated Lifeact-RFP cells used in Fig. 2d to measure virus speeds. (D) HeLa cells stably expressing GFP-tagged ARPC1 and ARPC5 isoforms were treated with 500 nM Latrunculin A for 20 min before imaging. GFP-tagged isoforms recruited to vaccinia virus (red) were bleached and their recovery was measured (ARPC1B is shown). Scale bar is 5 μm. The graph shows a comparison of the recovery kinetics of photobleached GFP-tagged isoforms. Data from 3 independent experiments were combined and error bars represent s.e.m. for the indicated number of virus (n).

Supplementary Figure 3 Cofilin promotes actin tail disassembly independently of either ARPC5 isoform.

(A) Immunofluorescence images of virus (red) induced actin tails (green) in HeLa cells treated with the indicated siRNA. (B) Quantification of actin tail lengths in cells treated with the indicated siRNA (n = 360 tails). The immunoblot shows the degree of knockdown. Scale bar is 5 μm. Data from 3 independent experiments were combined and error bars represent s.e.m. from n = 360 tails. Tukey’s multiple comparisons test was used to determine Statistical significances, where P < 0.001. Mean and s.e.m. are indicated below graph.

Supplementary Figure 4 Actin tail intensity profiles.

Average fluorescence intensity of GFP-tagged proteins in virus-induced actins tails in HeLa cells as a function of distance from the virus. Each profile represents the average of individual ‘snapshots’ of tails taken from live cell imaging. The data are fit with either a Gaussian (vaccinia), an exponentially modified Gaussian (lifeact, ArpC2, cortactin, coronin1C), or a sum of the two (N-WASP). The vertical dotted line denotes the position of peak fluorescence intensity of the RFP-tagged viral protein, A3. Error bars represent 95% confidence intervals with ‘snapshots’ of Vaccinia Virus (n = 4,050), N-WASP (n = 4,342), Cortactin (n = 7,558), ARPC2 (n = 2,043), LifeAct (nt = 1,314) and Coronin 1C (nt = 2,302).

Supplementary Figure 5 Localisation of cortactin is not dependent on Arp2/3 complex isoforms.

(AC) Immunoblot analysis of HeLa cells stably expresssing (A) photoactivatable β-actin, (B) photoactivatable ARPC2 or (C) photoactivable Cortactin and treated with the indicated siRNAs for 72 h and probed with the indicated antibodies. (D) Average fluorescence intensity of the Cortactin-GFP in virus-induced actins tails as a function of distance from the virus in cells treated with the indicated siRNAs. Each profile is generated by analysing 900–2,100 ‘snapshots’ of the indicated number of tails in live imaging of the indicated number of cells. The data are fit with exponentially modified Gaussian functions. Error bars represent 95% confidence intervals with cortactin-GFP ‘snapshots’ for Control (n = 2,147), siC5-C1A (n = 1,100) and siC5L-C1B (n = 935).

Supplementary information

Supplementary Information

Supplementary Information (PDF 1462 kb)

Actin based motility of vaccinia in cells lacking ARPC5 or ARPC5L.

The panel of three movies represent HeLa cells stably expressing Lifeact-RFP, infected with Vaccinia expressing YFP-A3 (a core viral protein) for 8 h, post siRNA transfection with either control or siRNA against ARPC5 or ARPC5L for 72 h. Movies correspond to 1 min at 1 s intervals. Movies are representative of the data presented in Fig. 2d. (MOV 382 kb)

Actin based motility of vaccinia in cells lacking ARPC1A or ARPC1B.

The panel of three movies represent HeLa cells stably expressing Lifeact-RFP, infected with Vaccinia expressing YFP-A3 (a core viral protein) for 8 h, post siRNA transfection with either control or siRNA against ARPC1A or ARPC1B for 72 h. Movies correspond to 1 min at 1 s intervals. Movies are representative of the data presented in Fig. 2d. (MOV 382 kb)

Photoactivation of actin in a vaccinia actin tail.

The movie shows a representative photoactivation experiment, from which the panels in Fig. 4a were extracted. HeLa cells stably expressing Cherry-GFPPAβ-actin (red before photoactivation) were infected with Vaccinia expressing YFP-A3 for 8 h, post transfection with RNAi against ARPC1A for 72 h. (MOV 651 kb)

Actin based motility of vaccinia in cells lacking Coronin 1B or IC.

The panel of three movies represent HeLa cells stably expressing LifeAct-RFP, infected with Vaccinia expressing YFP-A3 (a core viral protein) for 8 h, post siRNA transfection with either control or siRNA against coronin1B or coronin1C for 72 h. Movies correspond to 1 min at 2.4 s intervals. Movies are representative of the data presented in Fig. 5c. (MOV 437 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abella, J., Galloni, C., Pernier, J. et al. Isoform diversity in the Arp2/3 complex determines actin filament dynamics. Nat Cell Biol 18, 76–86 (2016). https://doi.org/10.1038/ncb3286

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb3286

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing