Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

MyomiR-133 regulates brown fat differentiation through Prdm16

Abstract

Brown adipose tissue (BAT) uses the chemical energy of lipids and glucose to produce heat, a function that can be induced by cold exposure or diet1. A key regulator of BAT is the gene encoding PR domain containing 16 (Prdm16), whose expression can drive differentiation of myogenic and white fat precursors to brown adipocytes2,3. Here we show that after cold exposure, the muscle-enriched miRNA-133 is markedly downregulated in BAT and subcutaneous white adipose tissue (SAT) as a result of decreased expression of its transcriptional regulator Mef2. miR-133 directly targets and negatively regulates PRDM16, and inhibition of miR-133 or Mef2 promotes differentiation of precursors from BAT and SAT to mature brown adipocytes, thereby leading to increased mitochondrial activity. Forced expression of miR-133 in brown adipogenic conditions prevents the differentiation to brown adipocytes in both BAT and SAT precursors. Our results point to Mef2 and miR-133 as central upstream regulators of Prdm16 and hence of brown adipogenesis in response to cold exposure in BAT and SAT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: miR-133 is downregulated after cold exposure.
Figure 2: miR-133 is an inhibitor of BAT differentiation.
Figure 3: miR-133 decreases the level of brown adipocyte differentiation of the SVF from SAT.
Figure 4: miR-133 directly targets PRDM16.
Figure 5: Regulation of brown adipocyte differentiation and function by miR-133, and its upstream control by Mef2.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Himms-Hagen, J. Brown adipose tissue thermogenesis: interdisciplinary studies. FASEB J. 4, 2890–2898 (1990).

    Article  CAS  Google Scholar 

  2. Seale, P. et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 454, 961–967 (2008).

    Article  CAS  Google Scholar 

  3. Seale, P. et al. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J. Clin. Invest. 121, 96–105 (2011).

    Article  CAS  Google Scholar 

  4. Hany, T. F. et al. Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region. Eur. J. Nucl. Med. Mol. Imaging 29, 1393–1398 (2002).

    Article  Google Scholar 

  5. Nedergaard, J., Bengtsson, T. & Cannon, B. Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab. 293, E444–E452 (2007).

    Article  CAS  Google Scholar 

  6. Cypess, A. M. et al. Identification and importance of brown adipose tissue in adult humans. New Engl. J. Med. 360, 1509–1517 (2009).

    Article  CAS  Google Scholar 

  7. Virtanen, K. A. et al. Functional brown adipose tissue in healthy adults. New Engl. J. Med. 360, 1518–1525 (2009).

    Article  CAS  Google Scholar 

  8. Frontini, A. & Cinti, S. Distribution and development of brown adipocytes in the murine and human adipose organ. Cell Metab. 11, 253–256 (2010).

    Article  CAS  Google Scholar 

  9. Cousin, B. et al. Occurrence of brown adipocytes in rat white adiposetissue: molecular and morphological characterization. J. Cell Sci. 103, 931–942 (1992).

    CAS  PubMed  Google Scholar 

  10. Guerra, C., Koza, R. A., Yamashita, H., Walsh, K. & Kozak, L. P. Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. J. Clin. Invest. 102, 412–420 (1998).

    Article  CAS  Google Scholar 

  11. Himms-Hagen, J. et al. Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am. J. Physiol. Cell Physiol. 279, C670–C681 (2000).

    Article  CAS  Google Scholar 

  12. Wu, J. et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150, 366–376 (2012).

    Article  CAS  Google Scholar 

  13. Walden, T. B., Timmons, J. A., Keller, P., Nedergaard, J. & Cannon, B. Distinct expression of muscle-specific microRNAs (myomirs) in brown adipocytes. J. Cell. Physiol. 218, 444–449 (2009).

    Article  CAS  Google Scholar 

  14. Sun, L. et al. MiR193b-365 is essential for brown fat differentiation. Nat. Cell Biol. 13, 958–965 (2011).

    Article  CAS  Google Scholar 

  15. Ivey, K. N. et al. MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell 2, 219–229 (2008).

    Article  CAS  Google Scholar 

  16. Chen, J. F. et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet. 38, 228–233 (2006).

    Article  CAS  Google Scholar 

  17. Liu, N. et al. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev. 22, 3242–3254 (2008).

    Article  CAS  Google Scholar 

  18. van Rooij, E. et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl Acad. Sci. USA 103, 18255–18260 (2006).

    Article  CAS  Google Scholar 

  19. Care, A. et al. MicroRNA-133 controls cardiac hypertrophy. Nature Med. 13, 613–618 (2007).

    Article  CAS  Google Scholar 

  20. Klein, J., Fasshauer, M., Klein, H. H., Benito, M. & Kahn, C. R. Novel adipocyte lines from brown fat: a model system for the study of differentiation, energy metabolism, and insulin action. Bioessays 24, 382–388 (2002).

    Article  CAS  Google Scholar 

  21. Spandl, J., White, D. J., Peychl, J. & Thiele, C. Live cell multicolor imaging of lipid droplets with a new dye, LD540. Traffic 10, 1579–1584 (2009).

    Article  CAS  Google Scholar 

  22. Murano, I., Barbatelli, G., Giordano, A. & Cinti, S. Noradrenergic parenchymal nerve fiber branching after cold acclimatisation correlates with brown adipocyte density in mouse adipose organ. J. Anat. 214, 171–178 (2009).

    Article  CAS  Google Scholar 

  23. Liu, N. et al. An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133. Proc. Natl Acad. Sci. USA 104, 20844–20849 (2007).

    Article  CAS  Google Scholar 

  24. Hansen, L. H., Madsen, B., Teisner, B., Nielsen, J. H. & Billestrup, N. Characterization of the inhibitory effect of growth hormone on primary preadipocyte differentiation. Mol. Endocrinol. 12, 1140–1149 (1998).

    Article  CAS  Google Scholar 

  25. Tozzo, E., Shepherd, P. R., Gnudi, L. & Kahn, B. B. Transgenic GLUT-4 overexpression in fat enhances glucose metabolism: preferential effect on fatty acid synthesis. Am. J. Physiol. 268, E956–E964 (1995).

    CAS  PubMed  Google Scholar 

  26. Trajkovski, M. et al. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 474, 649–653 (2011).

    Article  CAS  Google Scholar 

  27. Krutzfeldt, J. et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438, 685–689 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

We thank F. von Meyenn, M. Gustafsson Trajkovska, J. Kruetzfeldt and C. Wolfrum for technical help and discussions. This work was in part supported by the ERC grant Metabolomirs (MS), the Leducq Foundation and a Prodoc grant from the Swiss National Science Foundation (SNSF).

Author information

Authors and Affiliations

Authors

Contributions

M.T. developed the hypothesis, performed experimental work, analysed the data and wrote the manuscript. K.A. performed and analysed Figs 1c,d, 2l,m and 4h,j. C.C.E. provided the anti-miR compounds and contributed to the design of the miR-inhibition experiments. M.S. initiated the project, developed the hypothesis, analysed the data and coordinated the project and wrote the paper.

Corresponding authors

Correspondence to Mirko Trajkovski or Markus Stoffel.

Ethics declarations

Competing interests

M.S. is a member of the scientific advisory board of Regulus Therapeutics. C.C.E. is an employee of Regulus Therapeutics, which develops miRNA targeted therapies.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1407 kb)

Supplementary Table 1

Supplementary Information (XLS 36 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trajkovski, M., Ahmed, K., Esau, C. et al. MyomiR-133 regulates brown fat differentiation through Prdm16. Nat Cell Biol 14, 1330–1335 (2012). https://doi.org/10.1038/ncb2612

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2612

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing