Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

CPAP is a cell-cycle regulated protein that controls centriole length

Abstract

Centriole duplication involves the growing of a procentriole (progeny centriole) next to the proximal end of each pre-existing centriole (parental centriole). The molecular mechanisms that regulate procentriole elongation remain obscure. We show here that expression of the centriolar protein CPAP (centrosomal P4.1-associated protein) is carefully regulated during the cell cycle, with the protein being degraded in late mitosis. Depletion of CPAP inhibited centrosome duplication, whereas excess CPAP induced the formation of elongated procentriole-like structures (PLSs), which contain stable microtubules and several centriolar proteins. Ultrastructural analysis revealed that these structures are similar to procentrioles with elongated microtubules. Overexpression of a CPAP mutant (CPAP-377EE) that does not bind to tubulin dimers significantly inhibited the formation of CPAP-induced PLSs. Together, these results suggest that CPAP is a new regulator of centriole length and its intrinsic tubulin-dimer binding activity is required for procentriole elongation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CPAP protein levels are cell-cycle regulated.
Figure 2: Excess CPAP induced the formation of PLSs.
Figure 3: The CPAP-377EE mutant inhibits CPAP-induced PLSs and induces several abnormal mitotic phenotypes.
Figure 4: Depletion of hSAS-6 specifically inhibits the formation of CPAP-induced PLSs derived from procentrioles.
Figure 5: Model showing the role of CPAP in regulating centriole length during centriole biogenesis in human cells.

Similar content being viewed by others

References

  1. Bornens, M. Centrosome composition and microtubule anchoring mechanisms. Curr. Opin. Cell Biol. 14, 25–34 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Job, D., Valiron, O. & Oakley, B. Microtubule nucleation. Curr. Opin. Cell Biol. 15, 111–117 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Delattre, M. & Gonczy, P. The arithmetic of centrosome biogenesis. J. Cell Sci. 117, 1619–1630 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Nigg, E. A. Centrosome duplication: of rules and licenses. Trends Cell Biol. 17, 215–221 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Strnad, P. & Gonczy, P. Mechanisms of procentriole formation. Trends Cell Biol. 18, 389–396 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Azimzadeh, J. & Bornens, M. Structure and duplication of the centrosome. J. Cell Sci. 120, 2139–2142 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Kemp, C. A., Kopish, K. R., Zipperlen, P., Ahringer, J. & O'Connell, K. F. Centrosome maturation and duplication in C. elegans require the coiled-coil protein SPD-2. Dev. Cell 6, 511–523 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Kirkham, M., Muller-Reichert, T., Oegema, K., Grill, S. & Hyman, A. A. SAS-4 is a C. elegans centriolar protein that controls centrosome size. Cell 112, 575–587 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Leidel, S., Delattre, M., Cerutti, L., Baumer, K. & Gonczy, P. SAS-6 defines a protein family required for centrosome duplication in C. elegans and in human cells. Nature Cell Biol. 7, 115–125 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Leidel, S. & Gonczy, P. SAS-4 is essential for centrosome duplication in C. elegans and is recruited to daughter centrioles once per cell cycle. Dev. Cell 4, 431–439 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. O'Connell, K. F. et al. The C. elegans zyg-1 gene encodes a regulator of centrosome duplication with distinct maternal and paternal roles in the embryo. Cell 105, 547–558 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Pelletier, L. et al. The Caenorhabditis elegans centrosomal protein SPD-2 is required for both pericentriolar material recruitment and centriole duplication. Curr. Biol. 14, 863–873 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Bettencourt-Dias, M. et al. SAK/PLK4 is required for centriole duplication and flagella development. Curr. Biol. 15, 2199–2207 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Peel, N., Stevens, N. R., Basto, R. & Raff, J. W. Overexpressing centriole-replication proteins in vivo induces centriole overduplication and de novo formation. Curr. Biol. 17, 834–843 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rodrigues-Martins, A. et al. DSAS-6 organizes a tube-like centriole precursor, and its absence suggests modularity in centriole assembly. Curr. Biol. 17, 1465–1472 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Delattre, M., Canard, C. & Gonczy, P. Sequential protein recruitment in C. elegans centriole formation. Curr. Biol. 16, 1844–1849 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Pelletier, L., O'Toole, E., Schwager, A., Hyman, A. A. & Muller-Reichert, T. Centriole assembly in Caenorhabditis elegans. Nature 444, 619–623 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Andersen, J. S. et al. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426, 570–574 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Habedanck, R., Stierhof, Y. D., Wilkinson, C. J. & Nigg, E. A. The Polo kinase Plk4 functions in centriole duplication. Nature Cell Biol. 7, 1140–1146 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Tang, C. J. & Tang, T. K. Protein 4.1 R.-135 interacts with a novel centrosomal protein (CPAP) which is associated with the γ-tubulin complex. Mol. Cell Biol. 20, 7813–7825 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kleylein-Sohn, J. et al. Plk4-induced centriole biogenesis in human cells. Dev. Cell 13, 190–202 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Strnad, P. et al. Regulated HsSAS-6 levels ensure formation of a single procentriole per centriole during the centrosome duplication cycle. Dev. Cell 13, 203–213 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Peters, J. M. The anaphase promoting complex/cyclosome: a machine designed to destroy. Nature Rev. Mol. Cell Biol. 7, 644–656 (2006).

    Article  CAS  Google Scholar 

  24. Zou, C. et al. Centrobin: a novel daughter centriole-associated protein that is required for centriole duplication. J. Cell Biol. 171, 437–445 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Burton, J. L. & Solomon, M. J. D box and KEN box motifs in budding yeast Hsl1p are required for APC-mediated degradation and direct binding to Cdc20p and Cdh1p. Genes Dev. 15, 2381–2395 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pfleger, C. M. & Kirschner, M. W. The KEN box: an APC recognition signal distinct from the D box targeted by Cdh1. Genes Dev. 14, 655–665 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Schmidt, T. I. et al. Control of centriole length by CPAP and CP110. Curr. Biol. (in the press).

  28. Kohlmaier, G. et al. Overly long centrioles and defective cell division upon excess of the SAS-4-related protein CPAP. Curr. Biol. (in the press).

  29. Paoletti, A., Moudjou, M., Paintrand, M., Salisbury, J. L. & Bornens, M. Most of centrin in animal cells is not centrosome-associated and centrosomal centrin is confined to the distal lumen of centrioles. J. Cell Sci. 109 Pt 13, 3089–3102 (1996).

    CAS  PubMed  Google Scholar 

  30. Chen, H. L., Chang, C. W., Li, B. R. & Tang, T. K. Identification of a novel microtubule-destabilizing motif in CPAP that binds to tubulin heterodimers and inhibits microtubule assembly. Mol. Biol. Cell 15, 2697–2706 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hsu, W. B. et al. Functional characterization of the microtubule-binding and -destabilizing domains of CPAP and d-SAS-4. Exp. Cell Res. 314, 2591–2602 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Fry, A. M. et al. C-Nap1, a novel centrosomal coiled-coil protein and candidate substrate of the cell cycle-regulated protein kinase Nek2. J. Cell Biol. 141, 1563–1574 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nakazawa, Y., Hiraki, M., Kamiya, R. & Hirono, M. SAS-6 is a cartwheel protein that establishes the 9-fold symmetry of the centriole. Curr. Biol. 17, 2169–2174 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Spektor, A., Tsang, W. Y., Khoo, D. & Dynlacht, B. D. Cep97 and CP110 suppress a cilia assembly program. Cell 130, 678–690 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Chen, C. Y., Olayioye, M. A., Lindeman, G. J. & Tang, T. K. CPAP interacts with 14-3-3 in a cell cycle-dependent manner. Biochem. Biophys. Res. Commun. 342, 1203–1210 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. L. Wang and W.-H. Lee for their helpful comments and discussion, and Y.-N. Lin, J.-Y. Shau, Y. Chang, S.-P. Lee, C.-P. Lin and C.-M. Chang for their technical support. This work was supported by a grant from the National Science Council (NSC-97-2321-B-001-011) and from the Institute of Biomedical Science.

Author information

Authors and Affiliations

Authors

Contributions

C-J. C. T. conducted the experiments and helped with data analysis; R-H. F. and W-B. H. performed the cell-cycle work; K-S.W. assisted with electron microscopy analysis and T.K.T. planned and supervised the project and data analyses.

Corresponding author

Correspondence to Tang K. Tang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2363 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, CJ., Fu, RH., Wu, KS. et al. CPAP is a cell-cycle regulated protein that controls centriole length. Nat Cell Biol 11, 825–831 (2009). https://doi.org/10.1038/ncb1889

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1889

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing