Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A traffic-activated Golgi-based signalling circuit coordinates the secretory pathway

Abstract

As with other complex cellular functions, intracellular membrane transport involves the coordinated engagement of a series of organelles and machineries; however, the molecular basis of this coordination is unknown. Here we describe a Golgi-based signalling system that is activated by traffic and is involved in monitoring and balancing trafficking rates into and out of the Golgi complex. We provide evidence that the traffic signal is due to protein chaperones that leave the endoplasmic reticulum and reach the Golgi complex where they bind to the KDEL receptor. This initiates a signalling reaction that includes the activation of a Golgi pool of Src kinases and a phosphorylation cascade that in turn activates intra-Golgi trafficking, thereby maintaining the dynamic equilibrium of the Golgi complex. The concepts emerging from this study should help to understand the control circuits that coordinate high-order cellular functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PC-I arrival at the Golgi is associated with Tyr phosphorylation in the Golgi area.
Figure 2: Traffic stimulates Tyr phosphorylation on many proteins and activates SFKs in the Golgi area.
Figure 3: Activation of the KDEL-R leads to activation of SFKs in the Golgi area.
Figure 4: Inhibition of the KDEL-R impairs traffic-induced SFKs activation in the Golgi area.
Figure 5: A direct interaction between Src and the KDEL-R, as revealed by the yeast two-hybrid assay.
Figure 6: Activation of SFKs is required for synchronized intra-Golgi trafficking.
Figure 7: Activation of SFKs is required for steady-state intra-Golgi trafficking.
Figure 8: Model of traffic self-regulation by the chaperone-KDEL-R-SFK signal-response system.

Similar content being viewed by others

References

  1. Heinrich, R. & Rapoport, T. A. Generation of nonidentical compartments in vesicular transport systems. J. Cell Biol. 168, 271–280 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Donaldson, J. G. & Lippincott-Schwartz, J. Sorting and signaling at the Golgi complex. Cell 101, 693–696 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Sallese, M., Pulvirenti, T., & Luini, A. The physiology of membrane transport and endomembrane-based signalling. EMBO J. 25, 2663–2673 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. De Matteis, M. A., Santini, G., Kahn, R. A., Di Tullio, G., & Luini, A. Receptor and protein kinase C-mediated regulation of ARF binding to the Golgi complex. Nature 364, 818–821 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Luton, F., Verges, M., Vaerman, J. P., Sudol, M., & Mostov, K. E. The SRC family protein tyrosine kinase p62yes controls polymeric IgA transcytosis in vivo. Mol. Cell 4, 627–632 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Sorkin, A. & Von Zastrow, M. Signal transduction and endocytosis: close encounters of many kinds. Nature Rev. Mol. Cell Biol. 3, 600–614 (2002).

    Article  CAS  Google Scholar 

  7. Di Fiore, P. P. & De Camilli, P. Endocytosis and signaling. an inseparable partnership. Cell 106, 1–4 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Bivona, T. G. et al. Phospholipase Cγ activates Ras on the Golgi apparatus by means of RasGRP1. Nature 424, 694–698 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Sorkin, A. TRKing signals through the Golgi. Sci. STKE. 2005, e1 (2005).

    Google Scholar 

  10. Rocks, O. et al. An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 307, 1746–1752 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Michaelson, D., Ahearn, I., Bergo, M., Young, S., & Philips, M. Membrane trafficking of heterotrimeric G proteins via the endoplasmic reticulum and Golgi. Mol. Biol. Cell 13, 3294–3302 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Trucco, A. et al. Secretory traffic triggers the formation of tubular continuities across Golgi sub-compartments. Nature Cell Biol. 6, 1071–1081 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Mironov, A. A. et al. Small cargo proteins and large aggregates can traverse the Golgi by a common mechanism without leaving the lumen of cisternae. J. Cell Biol. 155, 1225–1238 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bonfanti, L. et al. Procollagen traverses the Golgi stack without leaving the lumen of cisternae: evidence for cisternal maturation. Cell 95, 993–1003 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Bjorge, J. D., Jakymiw, A., & Fujita, D. J. Selected glimpses into the activation and function of Src kinase. Oncogene 19, 5620–5635 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Thomas, S. M. & Brugge, J. S. Cellular functions regulated by Src family kinases. Annu. Rev. Cell Dev. Biol. 13, 513–609 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Bard, F. et al. Molecular complexes that contain both c-Cbl and c-Src associate with Golgi membranes. Eur. J. Cell Biol. 81, 26–35 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Bijlmakers, M. J., Isobe-Nakamura, M., Ruddock, L. J., & Marsh, M. Intrinsic signals in the unique domain target p56(lck) to the plasma membrane independently of CD4. J. Cell Biol. 137, 1029–1040 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Carreno, S., Gouze, M. E., Schaak, S., Emorine, L. J., & Maridonneau-Parini, I. Lack of palmitoylation redirects p59Hck from the plasma membrane to p61Hck-positive lysosomes. J. Biol. Chem. 275, 36223–36229 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Li, M. et al. The SH3 domain of Lck modulates T-cell receptor-dependent activation of extracellular signal-regulated kinase through activation of Raf-1. Mol. Cell Biol. 28, 630–641 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Hiyoshi, M. et al. Interaction between Hck and HIV-1 Nef negatively regulates cell surface expression of M-CSF receptor. Blood 111, 243–250 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Meyn, M. A., III, Schreiner, S. J., Dumitrescu, T. P., Nau, G. J., & Smithgall, T. E. SRC family kinase activity is required for murine embryonic stem cell growth and differentiation. Mol. Pharmacol. 68, 1320–1330 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Blake, R. A. et al. SU6656, a selective src family kinase inhibitor, used to probe growth factor signaling. Mol. Cell Biol. 20, 9018–9027 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bard, F., Mazelin, L., Pechoux-Longin, C., Malhotra, V., & Jurdic, P. Src regulates Golgi structure and KDEL receptor-dependent retrograde transport to the endoplasmic Reticulum. J. Biol. Chem. 278, 46601–46606 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Canty, E. G. & Kadler, K. E. Procollagen trafficking, processing and fibrillogenesis. J. Cell Sci. 118, 1341–1353 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Green, H. & Goldberg, B. Synthesis of collagen by mammalian cell lines of fibroblastic and nonfibroblastic origin. Proc. Natl Acad. Sci. USA 53, 1360–1365 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Scheel, A. A. & Pelham, H. R. Identification of amino acids in the binding pocket of the human KDEL receptor. J. Biol. Chem. 273, 2467–2472 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Munro, S. & Pelham, H. R. A C-terminal signal prevents secretion of luminal ER proteins. Cell 48, 899–907 (1987).

    Article  CAS  PubMed  Google Scholar 

  29. Pelham, H. R. Recycling of proteins between the endoplasmic reticulum and Golgi complex. Curr. Opin. Cell Biol. 3, 585–591 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Aoe, T. et al. The KDEL receptor, ERD2, regulates intracellular traffic by recruiting a GTPase-activating protein for ARF1. EMBO J 16, 7305–16 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Majoul, I. et al. KDEL receptor (Erd2p)-mediated retrograde transport of the cholera toxin A subunit from the Golgi involves COPI, p23, and the COOH terminus of Erd2p. J. Cell Biol. 143, 601–12 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Semenza, J. C., Hardwick, K. G., Dean, N., & Pelham, H. R. ERD2, a yeast gene required for the receptor-mediated retrieval of luminal ER proteins from the secretory pathway. Cell 61, 1349–1357 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Lewis, M. J. & Pelham, H. R. A human homologue of the yeast HDEL receptor. Nature 348, 162–163 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. Cabrera, M. et al. The retrieval function of the KDEL receptor requires PKA phosphorylation of its C terminus. Mol. Biol. Cell 14, 4114–4125 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yamamoto, K. et al. The KDEL receptor modulates the endoplasmic reticulum stress response through mitogen-activated protein kinase signaling cascades. J. Biol. Chem. 278, 34525–34532 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Johannes, L., Tenza, D., Antony, C., & Goud, B. Retrograde transport of KDEL-bearing B-fragment of Shiga toxin. J. Biol. Chem. 272, 19554–19561 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Keusch, G. T. et al. Globotriaosylceramide, Gb3, is an alternative functional receptor for Shiga-like toxin 2e. Infect. Immun. 63, 1138–1141 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Valderrama, F. et al. Actin microfilaments facilitate the retrograde transport from the Golgi complex to the endoplasmic reticulum in mammalian cells. Traffic 2, 717–726 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Connolly, C. N., Futter, C. E., Gibson, A., Hopkins, C. R., & Cutler, D. F. Transport into and out of the Golgi complex studied by transfecting cells with cDNAs encoding horseradish peroxidase. J. Cell Biol. 127, 641–652 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Hsu, V. W., Shah, N., & Klausner, R. D. A brefeldin A-like phenotype is induced by the overexpression of a human ERD-2-like protein, ELP-1. Cell 69, 625–635 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Townsley, F. M., Wilson, D. W., & Pelham, H. R. Mutational analysis of the human KDEL receptor: distinct structural requirements for Golgi retention, ligand binding and retrograde transport. EMBO J. 12, 2821–2829 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. McGarrigle, D. & Huang, X. Y. GPCRs signaling directly through Src-family kinases. Sci. STKE. 2007, e35 (2007).

    Google Scholar 

  43. Bain, J., McLauchlan, H., Elliott, M., & Cohen, P. The specificities of protein kinase inhibitors: an update. Biochem. J. 371, 199–204 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Klinghoffer, R. A., Sachsenmaier, C., Cooper, J. A., & Soriano, P. Src family kinases are required for integrin but not PDGFR signal transduction. EMBO J. 18, 2459–2471 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Arcaro, A. et al. Critical role for lipid raft-associated Src kinases in activation of PI3K–Akt signalling. Cell Signal. 19, 1081–1092 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Austin, C. D. & Shields, D. Formation of nascent secretory vesicles from the trans-Golgi network of endocrine cells is inhibited by tyrosine kinase and phosphatase inhibitors. J. Cell Biol. 135, 1471–1483 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Webb, R. J., Judah, J. D., Lo, L. C., & Thomas, G. M. 3Constitutive secretion of serum albumin requires reversible protein tyrosine phosphorylation events in trans-Golgi. Am. J. Physiol Cell Physiol 289, C748–C756 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Pelkmans, L. et al. Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis. Nature 436, 78–86 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Griffiths, G. et al. Localization of the Lys, Asp, Glu, Leu tetrapeptide receptor to the Golgi complex and the intermediate compartment in mammalian cells. J. Cell Biol. 127, 1557–1574 (1994).

    Article  CAS  PubMed  Google Scholar 

  50. Majoul, I., Straub, M., Hell, S. W., Duden, R., & Soling, H. D. KDEL-cargo regulates interactions between proteins involved in COPI vesicle traffic: measurements in living cells using FRET. Dev. Cell 1, 139–53 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Cetkovic, H., Grebenjuk, V. A., Muller, W. E., & Gamulin, V. Src proteins/src genes: from sponges to mammals. Gene 342, 251–261 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Patil, C. & Walter, P. Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr. Opin. Cell Biol. 13, 349–355 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Xia, Z. P. & Chen, Z. J. TRAF2: a double-edged sword? Sci. STKE. 2005, e7 (2005).

  54. Altan-Bonnet, N., Phair, R. D., Polishchuk, R. S., Weigert, R., & Lippincott-Schwartz, J. A role for Arf1 in mitotic Golgi disassembly, chromosome segregation, and cytokinesis. Proc. Natl Acad. Sci. USA 100, 13314–13319 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Preisinger, C. et al. YSK1 is activated by the Golgi matrix protein GM130 and plays a role in cell migration through its substrate 14–3-3ζ. J. Cell Biol. 164, 1009–1020 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Matsuda, D. et al. Involvement of Golgi-associated Lyn tyrosine kinase in the translocation of annexin II to the endoplasmic reticulum under oxidative stress. Exp. Cell Res. 312, 1205–1217 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Bonazzi, M. et al. CtBP3/BARS drives membrane fission in dynamin-independent transport pathways. Nature Cell Biol. 7, 570–580 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Mironov, A. A. et al. ER-to-Golgi carriers arise through direct en bloc protrusion and multistage maturation of specialized ER exit domains. Dev. Cell 5, 583–594 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Polishchuk, R., Di Pentima, A., & Lippincott-Schwartz, J. Delivery of raft-associated, GPI-anchored proteins to the apical surface of polarized MDCK cells by a transcytotic pathway. Nat. Cell Biol. 6, 297–307 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Mironov, A. et al. Role of NAD+ and ADP-ribosylation in the maintenance of the Golgi structure. J. Cell Biol. 139, 1109–1118 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. A. De Matteis and A. Colanzi for critical reading of the manuscript, C. P. Berrie for editorial assistance and E. Fontana for artwork preparation. We thank C. Ruggiero for experimental help and P. Randazzo, M. Frame, P. Cohen, K. Kadler and T. Smithgall for helpful discussions, and several other colleagues for sharing reagents (see Methods). We thank Telethon (Italy), AIRC (Italy) and MIUR (Italy) for financial support. T.P., M.G., Ma.C. and Mi.C. are or were FIRC Fellows. T.P. was a recipient of a Fellowship from Fondazioni Bancarie Abruzzesi and Fondazione Negri Sud ONLUS.

Author information

Authors and Affiliations

Authors

Contributions

T.P., M.S. and A.L. conceived and designed the study; T.P., M.G., Ma.C., Mi.C., A.P., R.P., E.S.P., G.V.B., A.A.M., G.T. and V.W.H. performed the experiments; M.S. and A.L. prepared the manuscript.

Corresponding authors

Correspondence to Michele Sallese or Alberto Luini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4, S5, S6, S7, S8 and Supplementary Information (PDF 1820 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pulvirenti, T., Giannotta, M., Capestrano, M. et al. A traffic-activated Golgi-based signalling circuit coordinates the secretory pathway. Nat Cell Biol 10, 912–922 (2008). https://doi.org/10.1038/ncb1751

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1751

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing