Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

SPPL2a and SPPL2b promote intramembrane proteolysis of TNFα in activated dendritic cells to trigger IL-12 production

Abstract

Homologues of signal peptide peptidase (SPPLs) are putative aspartic proteases that may catalyse regulated intramembrane proteolysis of type II membrane-anchored signalling factors. Here, we show that four human SPPLs are each sorted to a different compartment of the secretory pathway. We demonstrate that SPPL2a and SPPL2b, which are sorted to endosomes and the plasma membrane, respectively, are functional proteases that catalyse intramembrane cleavage of tumour necrosis factor alpha (TNFα). The two proteases promoted the release of the TNFα intracellular domain, which in turn triggers expression of the pro-inflammatory cytokine interleukin-12 by activated human dendritic cells. Our study reveals a critical function for SPPL2a and SPPL2b in the regulation of innate and adaptive immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SPP and SPPLs are sorted to distinct cellular compartments.
Figure 2: TNFα is processed by two proteolytic steps.
Figure 3: SPPL2a and SPPL2b are active aspartic proteases that act in RIP of TNFα.
Figure 4: TNFα-ICD triggers IL12 production in activated human dendritic cells in an SPPL2a- and SPPL2b-dependent manner.

Similar content being viewed by others

References

  1. Brown, M. S., Ye, J., Rawson, R. B. & Goldstein, J. L. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100, 391–398 (2000).

    Article  CAS  Google Scholar 

  2. Rawson, R. B. Regulated intramembrane proteolysis: from the endoplasmic reticulum to the nucleus. Essays Biochem. 38, 155–168 (2002).

    Article  CAS  Google Scholar 

  3. Brunkan, A. L. & Goate, A. M. Presenilin function and γ-secretase activity. J. Neurochem. 93, 769–792 (2005).

    Article  CAS  Google Scholar 

  4. Weihofen, A. & Martoglio, B. Intramembrane-cleaving proteases: controlled liberation of proteins and bioactive peptides. Trends Cell Biol. 13, 71–78 (2003).

    Article  CAS  Google Scholar 

  5. Haass, C. & Steiner, H. Alzheimer disease γ-secretase: a complex story of GxGD-type presenilin proteases. Trends Cell Biol. 12, 556–562 (2002).

    Article  CAS  Google Scholar 

  6. Rawson, R. B. et al. Complementation cloning of S2P, a gene encoding a putative metalloprotease required for intramembrane cleavage of SREBPs. Mol. Cell 1, 47–57 (1997).

    Article  CAS  Google Scholar 

  7. Ye, J. et al. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell 6, 1355–1364 (2000).

    Article  CAS  Google Scholar 

  8. Eissner, G., Kolch, W. & Scheurich, P. Ligands working as receptors: reverse signaling by members of the TNF superfamily enhance the plasticity of the immune system. Cytokine Growth Factor Rev. 15, 353–366 (2004).

    Article  CAS  Google Scholar 

  9. Laudon, H. et al. A nine-transmembrane domain topology for presenilin 1. J. Biol. Chem. 280, 35352–35360 (2005).

    Article  CAS  Google Scholar 

  10. Martoglio, B. & Golde, T. E. Intramembrane-cleaving aspartic proteases and disease: presenilins, signal peptide peptidase and their homologs. Hum. Mol. Genet. 12, R201–R206 (2003).

    Article  CAS  Google Scholar 

  11. Friedmann, E. et al. Consensus analysis of signal peptide peptidase and homologous human aspartic proteases reveals opposite topology of catalytic domains compared with presenilins. J. Biol. Chem. 279, 50790–50798 (2004).

    Article  CAS  Google Scholar 

  12. Weihofen, A., Binns, K., Lemberg, M. K., Ashman, K. & Martoglio, B. Identification of signal peptide peptidase, a presenilin-type aspartic protease. Science 296, 2215–2218 (2002).

    Article  CAS  Google Scholar 

  13. Lemberg, M. K. & Martoglio, B. Requirements for signal peptide peptidase-catalyzed intramembrane proteolysis. Mol. Cell 10, 735–744 (2002).

    Article  CAS  Google Scholar 

  14. Krawitz, P. et al. Differential localization and identification of a critical aspartate suggest non-redundant proteolytic functions of the presenilin in homologues SPPL2b and SPPL3. J. Biol. Chem. 280, 39515–39523 (2005).

    Article  CAS  Google Scholar 

  15. Aggarwal, B. B. Signalling pathways of the TNF superfamily: a double-edged sword. Nature Rev. Immunol. 3, 745–756 (2003).

    Article  CAS  Google Scholar 

  16. Weihofen, A. et al. Targeting presenilin-type aspartic protease signal peptide peptidase with γ-secretase inhibitors. J. Biol. Chem. 278, 16528–16533 (2003).

    Article  CAS  Google Scholar 

  17. Watts, A. D., Hunt, N. H., Madigan, M. C. & Chaudhri, G. Soluble TNF-α receptors bind and neutralize over-expressed transmembrane TNF-α on macrophages, but do not inhibit its processing. J. Leukoc. Biol. 66, 1005–1013 (1999).

    Article  CAS  Google Scholar 

  18. Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  Google Scholar 

  19. Cella, M., Sallusto, F. & Lanzavecchia, A. Origin, maturation and antigen presenting function of dendritic cells. Curr. Opin. Immunol. 9, 10–16 (1997).

    Article  CAS  Google Scholar 

  20. Trinchieri, G., Pflanz, S. & Kastelein, R. A. The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses. Immunity 19, 641–644 (2003).

    Article  CAS  Google Scholar 

  21. Fujii, S., Liu, K., Smith, C., Bonito, A. J. & Steinman, R. M. The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation. J. Exp. Med. 199, 1607–1618 (2004).

    Article  CAS  Google Scholar 

  22. Ma, X. TNF-α and IL-12: a balancing act in macrophage functioning. Microbes Infect. 3, 121–129 (2001).

    Article  CAS  Google Scholar 

  23. Cartstea, E. D., Hough, S., Wiederholt, K. & Welch, P. J. State-of-the-art modified RNAi compounds for therapeutics. IDrug 8, 642–647 (2005).

    Google Scholar 

  24. Yamada, Y., Kirillova, I., Peschon, J. J. & Fausto, N. Initiation of liver growth by tumor necrosis factor: deficient liver regeneration in mice lacking type I tumor necrosis factor receptor. Proc. Natl Acad. Sci. USA 94, 1441–1446 (1997).

    Article  CAS  Google Scholar 

  25. Steiner, H. et al. Glycine 384 is required for presenilin-1 function and is conserved in bacterial polytopic aspartyl proteases. Nature Cell Biol. 2, 848–851 (2000).

    Article  CAS  Google Scholar 

  26. Moss, M. L. et al. Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-α. Nature 385, 733–736 (1997).

    Article  CAS  Google Scholar 

  27. Peck, R., Brockhaus, M. & Frey, J. R. Cell surface tumor necrosis factor (TNF) accounts for monocyte- and lymphocyte-mediated killing of TNF-resistant target cells. Cell. Immunol. 122, 1–10 (1989).

    Article  Google Scholar 

  28. Perez, C. et al. A nonsecretable cell surface mutant of tumor necrosis factor (TNF) kills by cell-to-cell contact. Cell 63, 251–258 (1990).

    Article  CAS  Google Scholar 

  29. Grell, M. et al. The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell 83, 793–802 (1995).

    Article  CAS  Google Scholar 

  30. Eissner, G. et al. Reverse signaling through transmembrane TNF confers resistance to lipopolysaccharide in human monocytes and macrophages. J. Immunol. 164, 6193–6198 (2000).

    Article  CAS  Google Scholar 

  31. Domonkos, A., Udvardy, A., Laszlo, L., Nagy, T. & Duda, E. Receptor-like properties of the 26 kDa transmembrane form of TNF. Eur. Cytokine Netw. 12, 411–419 (2001).

    CAS  PubMed  Google Scholar 

  32. Hauben, E., Roncarolo, M. G., Nevo, U. & Schwartz, M. Beneficial autoimmunity in Type 1 diabetes mellitus. Trends Immunol. 26, 248–253 (2005).

    Article  CAS  Google Scholar 

  33. Hammond, C. & Helenius, A. Quality control in the secretory pathway: retention of a misfolded viral membrane glycoprotein involves cycling between the ER, intermediate compartment, and Golgi apparatus. J. Cell Biol. 126, 41–52 (1994).

    Article  CAS  Google Scholar 

  34. Wiltfang, J. et al. Improved electrophoretic separation and immunoblotting of β-amyloid (Aβ) peptides 1-40, 1-42, and 1-43. Electrophoresis 18, 527–532 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Cenni and C. Haass for critical comments on the manuscript, and E. Duda and A. Helenius for antibodies. This work was supported by ETH Zurich and grants from the Centre of Neuroscience Zurich, and the National Competence Centre for Research on Neuronal Plasticity and Repair to B.M. E.H. was supported by a fellowship from the International Human Frontier Science Program Organization.

Author information

Authors and Affiliations

Authors

Contributions

E.F. and E.H. performed the main experimental work and data analysis with HeLa cells and dendritic cells, respectively, and contributed to the writing of the manuscript. K.M., S.S., S.V., S.F.L., P.H.K and D.S. also performed experimental work. R.G. contributed to project planning and writing of the manuscript. B.M. was responsible for project planning and guidance, data analysis and writing the manuscript.

Note: Supplementary Information is available on the Nature Cell Biology website.

Corresponding author

Correspondence to Bruno Martoglio.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1 and S2 (PDF 384 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedmann, E., Hauben, E., Maylandt, K. et al. SPPL2a and SPPL2b promote intramembrane proteolysis of TNFα in activated dendritic cells to trigger IL-12 production. Nat Cell Biol 8, 843–848 (2006). https://doi.org/10.1038/ncb1440

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1440

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing