Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

NudEL targets dynein to microtubule ends through LIS1

Abstract

Dynein is a minus-end-directed microtubule motor with critical roles in mitosis, membrane transport and intracellular transport. Several proteins regulate dynein activity, including dynactin1, LIS1 (refs 2, 3) and NudEL (NudE-like)2,4,5,6,7,8. Here, we identify a NUDEL homologue in budding yeast and name it Ndl1. The ndl1Δ null mutant shows decreased targeting of dynein to microtubule plus ends, an essential element of the model for dynein function. We find that Ndl1 regulates dynein targeting through LIS1, with which it interacts biochemically, but not through CLIP170, another plus-end protein involved in dynein targeting9. Ndl1 is found at far fewer microtubule ends than are LIS1 and dynein. However, when Ndl1 is present at a plus end, the molar amount of Ndl1 approaches that of LIS1 and dynein. We propose a model in which Ndl1 binds transiently to the plus end to promote targeting of LIS1, which cooperatively recruits dynein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ndl1 is required for efficient Dyn1 and Pac1 targeting to the plus ends.
Figure 2: Ndl1 transiently localizes to microtubule plus ends.
Figure 3: Model for dynein targeting at the plus end of microtubules.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

GenBank/EMBL/DDBJ

References

  1. Schroer, T. A. Dynactin. Annu. Rev. Cell Dev. Biol. 20, 759–779 (2004).

    Article  CAS  Google Scholar 

  2. Faulkner, N. E. et al. A role for the lissencephaly gene LIS1 in mitosis and cytoplasmic dynein function. Nature Cell Biol. 2, 784–791 (2000).

    Article  CAS  Google Scholar 

  3. Vallee, R. B., Tai, C. & Faulkner, N. E. LIS1: cellular function of a disease-causing gene. Trends Cell Biol. 11, 155–160 (2001).

    Article  CAS  Google Scholar 

  4. Sasaki, S. et al. A LIS1/NUDEL/cytoplasmic dynein heavy chain complex in the developing and adult nervous system. Neuron 28, 681–696 (2000).

    Article  CAS  Google Scholar 

  5. Niethammer, M. et al. NUDEL is a novel Cdk5 substrate that associates with LIS1 and cytoplasmic dynein. Neuron 28, 697–711 (2000).

    Article  CAS  Google Scholar 

  6. Sapir, T., Elbaum, M. & Reiner, O. Reduction of microtubule catastrophe events by LIS1, platelet-activating factor acetylhydrolase subunit. EMBO J. 16, 6977–6984 (1997).

    Article  CAS  Google Scholar 

  7. Reiner, O. et al. Isolation of a Miller–Dieker lissencephaly gene containing G protein β-subunit-like repeats. Nature 364, 717–721 (1993).

    Article  CAS  Google Scholar 

  8. Pilz, D. T. et al. LIS1 and XLIS (DCX) mutations cause most classical lissencephaly, but different patterns of malformation. Hum. Mol. Genet. 7, 2029–2037 (1998).

    Article  CAS  Google Scholar 

  9. Sheeman, B. et al. Determinants of S. cerevisiae dynein localization and activation: implications for the mechanism of spindle positioning. Curr. Biol. 13, 364–372 (2003).

    Article  CAS  Google Scholar 

  10. Lee, W. L., Oberle, J. R. & Cooper, J. A. The role of the lissencephaly protein Pac1 during nuclear migration in budding yeast. J. Cell Biol. 160, 355–364 (2003).

    Article  CAS  Google Scholar 

  11. Xiang, X., Osmani, A. H., Osmani, S. A., Xin, M. & Morris, N. R. NudF, a nuclear migration gene in Aspergillus nidulans, is similar to the human LIS-1 gene required for neuronal migration. Mol. Biol. Cell 6, 297–310 (1995).

    Article  CAS  Google Scholar 

  12. Efimov, V. P. & Morris, N. R. The LIS1-related NUDF protein of Aspergillus nidulans interacts with the coiled-coil domain of the NUDE/RO11 protein. J. Cell Biol. 150, 681–688 (2000).

    Article  CAS  Google Scholar 

  13. Feng, Y. et al. LIS1 regulates CNS lamination by interacting with mNudE, a central component of the centrosome. Neuron 28, 665–679 (2000).

    Article  CAS  Google Scholar 

  14. Sweeney, K. J., Prokscha, A. & Eichele, G. NudE-L, a novel Lis1-interacting protein, belongs to a family of vertebrate coiled-coil proteins. Mech. Dev. 101, 21–33 (2001).

    Article  CAS  Google Scholar 

  15. Feng, Y. & Walsh, C. A. Mitotic spindle regulation by Nde1 controls cerebral cortical size. Neuron 44, 279–293 (2004).

    Article  CAS  Google Scholar 

  16. Shu, T. et al. Ndel1 operates in a common pathway with LIS1 and cytoplasmic dynein to regulate cortical neuronal positioning. Neuron 44, 263–277 (2004).

    Article  CAS  Google Scholar 

  17. Lee, W. -L., Kaiser, M. & Cooper, J. A. The offloading model for dynein function: differential function of motor subunits. J. Cell Biol. 168, 201–207 (2005).

    Article  CAS  Google Scholar 

  18. Tarricone, C. et al. Coupling PAF signaling to dynein regulation; structure of LIS1 in complex with PAF-acetylhydrolase. Neuron 44, 809–821 (2004).

    CAS  PubMed  Google Scholar 

  19. Adames, N. R. & Cooper, J. A. Microtubule interactions with the cell cortex causing nuclear movements in Saccharomyces cerevisiae. J. Cell Biol. 149, 863–874 (2000).

    Article  CAS  Google Scholar 

  20. Carvalho, P., Gupta, M. L. Jr, Hoyt, M. A. & Pellman, D. Cell cycle control of kinesin-mediated transport of Bik1 (CLIP-170) regulates microtubule stability and dynein activation. Dev. Cell 6, 815–829 (2004).

    Article  CAS  Google Scholar 

  21. Efimov, V. P. Roles of NUDE and NUDF proteins of Aspergillus nidulans: insights from intracellular localization and overexpression effects. Mol. Biol. Cell 14, 871–888 (2003).

    Article  CAS  Google Scholar 

  22. Gomes, E. R., Jani, S. & Gundersen, G. G. Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell 121, 451–463 (2005).

    Article  CAS  Google Scholar 

  23. Kaiser, C., Michaelis, S. & Mitchell, A. Methods in Yeast Genetics (Cold Spring Harbor Laboratory Press, Plainview, 1994).

    Google Scholar 

  24. Baudin, A., Ozierkalogeropoulos, O., Denouel, A., Lacroute, F. & Cullin, C. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 21, 3329–3330 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to R. Heil-Chapdelaine and S. Nelson for their advice and assistance. This work was supported by the American Heart Association Fellowship AHA40390 to J.L., Damon Runyon Cancer Research Foundation Fellowship DRG -1671 to W.-L.L., and NIH GM47337 to J.A.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Cooper.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figure S1, movie legend and supplementary tables S1 and S2 (PDF 450 kb)

Supplementary Information

Supplementary movie S1a (AVI 149 kb)

Supplementary Information

Supplementary movie S1b (AVI 153 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Lee, WL. & Cooper, J. NudEL targets dynein to microtubule ends through LIS1. Nat Cell Biol 7, 686–690 (2005). https://doi.org/10.1038/ncb1273

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1273

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing