Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

The Egr-1 transcription factor directly activates PTEN during irradiation-induced signalling

Abstract

The PTEN tumour suppressor1 and pro-apoptotic2 gene is frequently mutated in human cancers. We show that PTEN transcription is upregulated by Egr-1 after irradiation in wild-type, but not egr-1−/−, mice in vivo. We found that Egr-1 specifically binds to the PTEN 5′ untranslated region, which contains a functional GCGGCGGCG Egr-1-binding site. Inducing Egr-1 by exposing cells to ultraviolet light upregulates expression of PTEN messenger RNA and protein, and leads to apoptosis. egr-1−/− cells, which cannot upregulate PTEN expression after irradiation, are resistant to ultraviolet-light-induced apoptosis. Therefore, Egr-1 can directly regulate PTEN, triggering the initial step in this apoptotic pathway. Loss of Egr-1 expression, which often occurs in human cancers, could deregulate the PTEN gene and contribute to the radiation resistance of some cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ultraviolet irradiation and ectopic Egr-1 stimulate expression of PTEN mRNA and protein.
Figure 2: Mapping the Egr-1-responsive element in the PTEN promoter.
Figure 3: Egr-1 binds directly to PTEN regulatory sequences in vivo.
Figure 4: Egr-1 is required for PTEN-dependent ultraviolet-induced apoptosis.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Simpson, L. & Parsons, R. Exp. Cell Res. 264, 29–41 (2001).

    Article  CAS  Google Scholar 

  2. Lu, Y. et al. Oncogene 18, 7034–7045 (1999).

    Article  CAS  Google Scholar 

  3. Steck, P. A. et al. Nature Genet. 15, 356–362 (1997).

    Article  CAS  Google Scholar 

  4. Li, J. et al. Science 275, 1943–1947 (1997).

    Article  CAS  Google Scholar 

  5. Liaw, D. et al. Nature Genet. 16, 64–67 (1997).

    Article  CAS  Google Scholar 

  6. Arch, E. M. et al. Am. J. Med. Genet. 71, 489–493 (1997).

    Article  CAS  Google Scholar 

  7. Marsh, D. J. et al. Nature Genet. 16, 333–334 (1997).

    Article  CAS  Google Scholar 

  8. Myers, M. P. et al. Proc. Natl Acad. Sci. USA 95, 13513–13518 (1998).

    Article  CAS  Google Scholar 

  9. Suzuki, A. et al. Curr. Biol. 8, 1169–1178 (1998).

    Article  CAS  Google Scholar 

  10. Wang, X. et al. J. Immunol. 164, 1934–1939 (2000).

    Article  CAS  Google Scholar 

  11. Weng, L. P., Brown, J. L. & Eng, C. Hum. Mol. Genet. 10, 237–242 (2001).

    Article  CAS  Google Scholar 

  12. Weng, L. P. et al. Cancer Res. 59, 5808–5814 (1999).

    CAS  PubMed  Google Scholar 

  13. Ge, N. L. & Rudikoff, S. Oncogene 19, 4091–4095 (2000).

    Article  CAS  Google Scholar 

  14. Sukhatme, V. P. et al. Cell 53, 37–43 (1988).

    Article  CAS  Google Scholar 

  15. Huang, R.-P., Darland, T., Okamura, D., Mercola, D. & Adamson, E. D. Oncogene 9, 1367–1377 (1994).

    CAS  PubMed  Google Scholar 

  16. Huang, R.-P., Liu, C.-T., Fan, Y., Mercola, D. A. & Adamson, E. D. Cancer Res. 55, 5054–5062 (1995).

    CAS  PubMed  Google Scholar 

  17. Huang, R. P. et al. Int. J. Cancer 72, 102–109 (1997).

    Article  CAS  Google Scholar 

  18. Liu, C. et al. J. Biol. Chem. 274, 4400–4411 (1999).

    Article  CAS  Google Scholar 

  19. de Belle, I. et al. Oncogene 18, 3633–3642 (1999).

    Article  CAS  Google Scholar 

  20. Ahmed, M. M. et al. J. Biol. Chem. 272, 33056–33061 (1997).

    Article  CAS  Google Scholar 

  21. Ahmed, M. M. et al. J. Biol. Chem. 271, 29231–29237 (1996).

    Article  CAS  Google Scholar 

  22. Huang, R.-P., Wu, J.-X., Fan, Y. & Adamson, E. D. J. Cell Biol. 133, 211–220 (1996).

    Article  CAS  Google Scholar 

  23. de Belle, I., Mercola, D. & Adamson, E. D. Biotechniques 29, 162–169 (2000).

    Article  CAS  Google Scholar 

  24. Stambolic, V. et al. Cell 95, 29–39 (1998).

    Article  CAS  Google Scholar 

  25. Huang, R. P. & Adamson, E. D. Oncogene 10, 467–475 (1995).

    CAS  PubMed  Google Scholar 

  26. Lee, S. L. et al. Science 273, 1219–1221 (1996).

    Article  CAS  Google Scholar 

  27. Todaro, G. J. & Green, H. J. Cell Biol. 17, 299–313 (1963).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to A. Krones for her skilled assistance in providing mutant and wild-type mouse tissues. We thank E. Ruoslahti and J. Reed for comments on the manuscript. We are indebted to J. Milbrandt, Washington University Medical School, St Louis, for the gift of Egr-1 knockout animals. This work was supported by grants from the National Institutes of Health (E.D.A., D.M. and T.M.); from the Department of Defense (E.D.A. and I. de B.) and from the Tobacco Related Diseases Research Program of the University of California (I. de B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian de Belle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Virolle, T., Adamson, E., Baron, V. et al. The Egr-1 transcription factor directly activates PTEN during irradiation-induced signalling. Nat Cell Biol 3, 1124–1128 (2001). https://doi.org/10.1038/ncb1201-1124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1201-1124

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing