Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Wingless promotes cell survival but constrains growth during Drosophila wing development

Abstract

During animal development, organs grow to a fixed size and shape. Organ development typically begins with a rapid growth phase followed by a gradual decline in growth rate as the organ matures1, but the regulation of either stage of growth remains unclear. The Wnt/Wingless (Wg) proteins are critical for patterning most animal organs, have diverse effects on development and have been proposed to promote organ growth2. Here we report that contrary to this view, Wg activity actually constrains wing growth during Drosophila melanogaster wing development. In addition, we demonstrate that Wg is required for wing cell survival, particularly during the rapid growth phase of wing development. We propose that the cell-survival- and growth-constraining activities of Wg function to sculpt and delimit final wing size as part of its overall patterning programme.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategy for analysing growth during wing development.
Figure 2: Wing pouch cells deprived of Wg die at high frequency.
Figure 3: Altering Wg activity disrupts the growth profile.
Figure 4: Loss or gain of Wg alters cell cycle phasing.

Similar content being viewed by others

References

  1. Bryant, P.J. & Simpson, P. Intrinsic and extrinsic control of growth in developing organs. Q. Rev. Biol. 59, 387–415 (1984).

    Article  CAS  Google Scholar 

  2. Serrano, N. & O'Farrell, P.H. Limb morphogenesis: connections between patterning and growth. Curr. Biol. 7, 186–195 (1997).

    Article  Google Scholar 

  3. Zecca, M., Basler, K. & Struhl, G. Direct and long-range action of a wingless morphogen gradient. Cell 87, 833–844 (1996).

    Article  CAS  Google Scholar 

  4. Neumann, C.J. & Cohen, S.M. Long-range action of Wingless organizes the dorsal–ventral axis of the Drosophila wing. Development 124, 871–880 (1997).

    CAS  PubMed  Google Scholar 

  5. Bryant, P.J. & Levinson, P. Intrinsic growth control in the imaginal primordia of Drosophila, and the autonomous action of a lethal mutation causing overgrowth. Dev. Biol. 107, 355–363 (1985).

    Article  CAS  Google Scholar 

  6. Garcia-Bellido, A. & Merriam, J.R. Parameters of the wing imaginal disc development of Drosophila melanogaster. Dev. Biol. 24, 61–87 (1971).

    Article  CAS  Google Scholar 

  7. Fain, M.J. & Stevens, B. Alterations in the cell cycle of Drosophila imaginal disc cells precede metamorphosis. Dev. Biol. 92, 247–258 (1982).

    Article  CAS  Google Scholar 

  8. Graves, B. & Schubiger, G. Cell cycle changes during growth and differentiation of imaginal leg discs in Drosophila melanogaster. Dev. Biol. 93, 104–110 (1982).

    Article  CAS  Google Scholar 

  9. O'Brochta, D.A. & Bryant, P.J. A zone of non-proliferating cells at a lineage restriction boundary in Drosophila. Nature 313, 138–141 (1985).

    Article  CAS  Google Scholar 

  10. Johnston, L.A. & Edgar, B.A. Wingless and Notch regulate cell-cycle arrest in the developing Drosophila wing. Nature 394, 82–84 (1998).

    Article  CAS  Google Scholar 

  11. Struhl, G. & Basler, K. Organizing activity of Wingless protein in Drosophila. Cell 72, 527–540 (1993).

    Article  CAS  Google Scholar 

  12. Neufeld, T., de la Cruz, A.F., Johnston, L.A. & Edgar, B.A. Coordination of growth and cell division in the Drosophila wing. Cell 93, 1183–1193 (1998).

    Article  CAS  Google Scholar 

  13. Chen, C.M. & Struhl, G. Wingless transduction by the Frizzled and Frizzled2 proteins of Drosophila. Development 126, 5441–52 (1999).

    CAS  PubMed  Google Scholar 

  14. Wehrli, M. et al. arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature 407, 527–530 (2000).

    Article  CAS  Google Scholar 

  15. van de Wetering, M. et al. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88, 789–799 (1997).

    Article  CAS  Google Scholar 

  16. Milan, M., Campuzano, S. & Garcia-Bellido, A. Developmental parameters of cell death in the wing disc of Drosophila. Proc. Natl Acad. Sci. USA 94, 5691–5696 (1997).

    Article  CAS  Google Scholar 

  17. Hay, B.A., Wolff, T. & Rubin, G.M. Expression of baculovirus P35 prevents cell death in Drosophila. Development 120, 2121–2129 (1994).

    CAS  PubMed  Google Scholar 

  18. Cifuentes, F.J. & Garcia-Bellido, A. Proximo-distal specification in the wing disc of Drosophila by the nubbin gene. Proc. Natl Acad. Sci. USA 94, 11405–11410 (1997).

    Article  CAS  Google Scholar 

  19. Azpiazu, N. & Morata, G. Function and regulation of homothorax in the wing imaginal disc of Drosophila. Development 127, 2685–2693 (2000).

    CAS  PubMed  Google Scholar 

  20. Casares, F. & Mann, R.S. A dual role for homothorax in inhibiting wing blade development and specifying proximal wing identities in Drosophila. Development 127, 1499–1508 (2000).

    CAS  PubMed  Google Scholar 

  21. Du, W., Xie, J. & Dyson, N. Ectopic expression of dE2F and dDP induces cell proliferation and death in the Drosophila eye. EMBO J. 15, 3684–3692 (1996).

    Article  CAS  Google Scholar 

  22. Asano, M. & Wharton, R.P. E2F mediates developmental and cell cycle regulation of ORC1 in Drosophila. EMBO J. 18, 2435–2448 (1999).

    Article  CAS  Google Scholar 

  23. Nolo, R., Abbott, L.A. & Bellen, H.J. Drosophila Lyra mutations are gain-of-function mutations of senseless. Genetics 157, 307–15 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Cox, R.T. et al. A screen for mutations that suppress the phenotype of Drosophila armadillo, the β-catenin homolog. Genetics 155, 1725–1740 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. van de Wetering, M. et al. The β-catenin–TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111, 241–250 (2002).

    Article  CAS  Google Scholar 

  26. Pignoni, F. & Zipursky, S. Induction of Drosophila eye development by decapentaplegic. Development 124, 271–278 (1997).

    CAS  PubMed  Google Scholar 

  27. Nellen, D., Burke, R., Struhl, G. & Basler, K. Direct and long-range action of a DPP morphogen gradient. Cell 85, 357–368 (1996).

    Article  CAS  Google Scholar 

  28. Johnston, L.A., Prober, D.A., Edgar, B.A., Eisenman, R.N. & Gallant, P. Drosophila Myc regulates cellular growth during development. Cell 98, 779–790 (1999).

    Article  CAS  Google Scholar 

  29. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

L.A.J. very gratefully acknowledges the continual encouragement and generous support of Bruce Edgar, in whose lab this work was started. We thank K. Shah, E. Yoshida and L. Gatto for technical assistance, T. Jessel and I. Schieren for FACS use and assistance, and B. Edgar, I. Greenwald, T. Jessel, R. Mann, G. Struhl, A. Tomlinson, and members of the Johnston lab for comments on the manuscript. This work was supported in part by the V Foundation for Cancer Research, NY Speaker's Fund for Biomedical Sciences (L.A.J.) and the National Institutes of Health (HD42770 to L.A.J, GM51186 to B. Edgar). L.A.J. is a V Foundation Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura A. Johnston.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnston, L., Sanders, A. Wingless promotes cell survival but constrains growth during Drosophila wing development. Nat Cell Biol 5, 827–833 (2003). https://doi.org/10.1038/ncb1041

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1041

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing