Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Receptor-like kinases shape the plant

Abstract

To generate the various tissues and organs that build up the adult body, plants and animals require organized formative cell divisions and correct cell specification. In plants, these processes are controlled mainly by phytohormones and transcriptional networks. Recently, ligand–receptor-like kinase signalling pathways have been revealed as additional potentially crucial regulators of cell specification in plants. We review here the importance of such signalling cascades for plant growth and development, and we discuss, where possible, similarities to well-investigated cascades in animals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Receptor-like kinases in the shoot and root meristem.
Figure 2: Receptor-like kinases in epidermal layers.
Figure 3: Receptor-like kinases affect the plane of cell division and cell differentiation.
Figure 4: Receptor-like kinases control different steps of anther tissue development.

Similar content being viewed by others

References

  1. Scheres, B. Stem-cell niches: nursery rhymes across kingdoms. Nature Rev. Mol. Cell Biol. 8, 345–354 (2007).

    CAS  Google Scholar 

  2. Scheres, B. & Benfey, P. N. Asymmetric Cell Division in Plants. Annu. Rev. Plant Physiol. Plant. Mol. Biol. 50, 505–537 (1999).

    CAS  PubMed  Google Scholar 

  3. Berger, F., Haseloff, J., Schiefelbein, J. & Dolan, L. Positional information in root epidermis is defined during embryogenesis and acts in domains with strict boundaries. Curr. Biol. 8, 421–430 (1998).

    CAS  PubMed  Google Scholar 

  4. van den Berg, C., Willemsen, V., Hage, W., Weisbeek, P. & Scheres, B. Cell fate in the Arabidopsis root meristem determined by directional signalling. Nature 378, 62–65 (1995).

    CAS  PubMed  Google Scholar 

  5. Hubbard, S. R. & Miller, W. T. Receptor tyrosine kinases: mechanisms of activation and signaling. Curr. Opin. Cell Biol. 19, 117–123 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 103, 211–225 (2000).

    CAS  PubMed  Google Scholar 

  7. Bhalerao, R. P. & Bennett, M. J. The case for morphogens in plants. Nature Cell Biol. 5, 939–943 (2003).

    CAS  PubMed  Google Scholar 

  8. Smith, J. C., Hagemann, A., Saka, Y. & Williams, P. H. Understanding how morphogens work. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 363, 1387–1392 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. De Smet, I. & Jürgens, G. Patterning the axis in plants - auxin in control. Curr. Opin. Genet. Dev. 17, 337–343 (2007).

    CAS  PubMed  Google Scholar 

  10. Kurata, T., Okada, K. & Wada, T. Intercellular movement of transcription factors. Curr. Opin. Plant Biol. 8, 600–605 (2005).

    CAS  PubMed  Google Scholar 

  11. Lau, S., Jürgens, G. & De Smet, I. The evolving complexity of the auxin pathway. Plant Cell 20, 1738–1746 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Tanaka, H., Dhonukshe, P., Brewer, P. B. & Friml, J. Spatiotemporal asymmetric auxin distribution: a means to coordinate plant development. Cell Mol. Life Sci. 63, 2738–2754 (2006).

    CAS  PubMed  Google Scholar 

  13. Matsubayashi, Y. & Sakagami, Y. Peptide hormones in plants. Annu. Rev. Plant Biol. 57, 649–674 (2006).

    CAS  PubMed  Google Scholar 

  14. Butenko, M. A., Vie, A. K., Brembu, T., Aalen, R. B. & Bones, A. M. Plant peptides in signalling: looking for new partners. Trends Plant Sci. 14, 255–263 (2009).

    CAS  PubMed  Google Scholar 

  15. Mitchum, M. G., Wang, X. & Davis, E. L. Diverse and conserved roles of CLE peptides. Curr. Opin. Plant Biol. 11, 75–81 (2008).

    CAS  PubMed  Google Scholar 

  16. Shiu, S. H. & Bleecker, A. B. Plant receptor-like kinase gene family: diversity, function, and signaling. Sci. STKE 2001, RE22 (2001).

    CAS  PubMed  Google Scholar 

  17. Oh, M. H. et al. Tyrosine phosphorylation of the BRI1 receptor kinase emerges as a component of brassinosteroid signaling in Arabidopsis. Proc. Natl Acad. Sci. USA 106, 658–663 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lease, K. A. & Walker, J. C. The Arabidopsis unannotated secreted peptide database, a resource for plant peptidomics. Plant Physiol. 142, 831–838 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Parniske, M. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Rev. Microbiol. 6, 763–775 (2008).

    CAS  Google Scholar 

  20. Afzal, A. J., Wood, A. J. & Lightfoot, D. A. Plant receptor-like serine threonine kinases: roles in signaling and plant defense. Mol. Plant Microbe Interact. 21, 507–517 (2008).

    CAS  PubMed  Google Scholar 

  21. Takayama, S. & Isogai, A. Self-incompatibility in plants. Annu. Rev. Plant Biol. 56, 467–489 (2005).

    CAS  PubMed  Google Scholar 

  22. Belkhadir, Y., Wang, X. & Chory, J. Brassinosteroid signaling pathway. Sci. STKE 2006, cm4 (2006).

    PubMed  Google Scholar 

  23. Hematy, K. & Hofte, H. Novel receptor kinases involved in growth regulation. Curr. Opin. Plant Biol. 11, 321–328 (2008).

    CAS  PubMed  Google Scholar 

  24. Clark, S. E. Cell signalling at the shoot meristem. Nature Rev. Mol. Cell Biol. 2, 276–284 (2001).

    CAS  Google Scholar 

  25. Stahl, Y. & Simon, R. Plant stem cell niches. Int. J. Dev. Biol. 49, 479–489 (2005).

    PubMed  Google Scholar 

  26. Ogawa, M., Shinohara, H., Sakagami, Y. & Matsubayashi, Y. Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. Science 319, 294 (2008).

    CAS  PubMed  Google Scholar 

  27. Clark, S. E., Running, M. P. & Meyerowitz, E. M. CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development 119, 397–418 (1993).

    CAS  PubMed  Google Scholar 

  28. Dievart, A. et al. CLAVATA1 dominant-negative alleles reveal functional overlap between multiple receptor kinases that regulate meristem and organ development. Plant Cell 15, 1198–1211 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. DeYoung, B. J. et al. The CLAVATA1-related BAM1, BAM2 and BAM3 receptor kinase-like proteins are required for meristem function in Arabidopsis. Plant J. 45, 1–16 (2006).

    CAS  PubMed  Google Scholar 

  30. DeYoung, B. J. & Clark, S. E. BAM receptors regulate stem cell specification and organ development through complex interactions with CLAVATA signaling. Genetics 180, 895–904 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Miwa, H. et al. The receptor-like kinase SOL2 mediates CLE signaling in Arabidopsis. Plant Cell Physiol. 49, 1752–1757 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Müller, R., Bleckmann, A. & Simon, R. The receptor kinase CORYNE of Arabidopsis transmits the stem cell-limiting signal CLAVATA3 independently of CLAVATA1. Plant Cell 20, 934–946 (2008).

    PubMed  PubMed Central  Google Scholar 

  33. Inoue, T. et al. C. elegans LIN-18 is a Ryk ortholog and functions in parallel to LIN-17/Frizzled in Wnt signaling. Cell 118, 795–806 (2004).

    CAS  PubMed  Google Scholar 

  34. Nodine, M. D., Yadegari, R. & Tax, F. E. RPK1 and TOAD2 are two receptor-like kinases redundantly required for Arabidopsis embryonic pattern formation. Dev. Cell 12, 943–956 (2007).

    CAS  PubMed  Google Scholar 

  35. De Smet, I. et al. Receptor-like kinase ACR4 restricts formative cell divisions in the Arabidopsis root. Science 322, 594–597 (2008).

    CAS  PubMed  Google Scholar 

  36. Stahl, Y., Wink, R. H., Ingram, G. C. & Simon, R. A Signaling Module Controlling the stem cell niche in Arabidopsis Root Meristems. Curr. Biol. 19, 909–914 (2009).

    CAS  PubMed  Google Scholar 

  37. Cao, X., Li, K., Suh, S. G., Guo, T. & Becraft, P. W. Molecular analysis of the CRINKLY4 gene family in Arabidopsis thaliana. Planta 220, 645–657 (2005).

    CAS  PubMed  Google Scholar 

  38. Stokes, K. D. & Gururaj Rao, A. Dimerization properties of the transmembrane domains of Arabidopsis CRINKLY4 receptor-like kinase and homologs. Arch. Biochem. Biophys. 477, 219–226 (2008).

    CAS  PubMed  Google Scholar 

  39. Gifford, M. L., Robertson, F. C., Soares, D. C. & Ingram, G. C. ARABIDOPSIS CRINKLY4 function, internalization, and turnover are dependent on the extracellular crinkly repeat domain. Plant Cell 17, 1154–1166 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tsuwamoto, R., Fukuoka, H. & Takahata, Y. GASSHO1 and GASSHO2 encoding a putative leucine-rich repeat transmembrane-type receptor kinase are essential for the normal development of the epidermal surface in Arabidopsis embryos. Plant J. 54, 30–42 (2008).

    CAS  PubMed  Google Scholar 

  41. Casamitjana-Martinez, E. et al. Root-specific CLE19 overexpression and the sol1/2 suppressors implicate a CLV-like pathway in the control of Arabidopsis root meristem maintenance. Curr. Biol. 13, 1435–1441 (2003).

    CAS  PubMed  Google Scholar 

  42. Fiers, M. et al. Mis-expression of the CLV3/ESR-like gene CLE19 in Arabidopsis leads to a consumption of root meristem. Gene 327, 37–49 (2004).

    CAS  PubMed  Google Scholar 

  43. Hobe, M., Muller, R., Grunewald, M., Brand, U. & Simon, R. Loss of CLE40, a protein functionally equivalent to the stem cell restricting signal CLV3, enhances root waving in Arabidopsis. Dev. Genes Evol. 213, 371–381 (2003).

    CAS  PubMed  Google Scholar 

  44. Fiers, M. et al. The 14-amino acid CLV3, CLE19, and CLE40 peptides trigger consumption of the root meristem in Arabidopsis through a CLAVATA2-dependent pathway. Plant Cell 17, 2542–2553 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Fiers, M., Ku, K. L. & Liu, C. M. CLE peptide ligands and their roles in establishing meristems. Curr. Opin. Plant Biol. 10, 39–43 (2007).

    CAS  PubMed  Google Scholar 

  46. Savaldi-Goldstein, S., Peto, C. & Chory, J. The epidermis both drives and restricts plant shoot growth. Nature 446, 199–202 (2007).

    CAS  PubMed  Google Scholar 

  47. Becraft, P. W., Stinard, P. S. & McCarty, D. R. CRINKLY4: A TNFR-like receptor kinase involved in maize epidermal differentiation. Science 273, 1406–1409 (1996).

    CAS  PubMed  Google Scholar 

  48. Gifford, M. L., Dean, S. & Ingram, G. C. The Arabidopsis ACR4 gene plays a role in cell layer organisation during ovule integument and sepal margin development. Development 130, 4249–4258 (2003).

    CAS  PubMed  Google Scholar 

  49. Watanabe, M., Tanaka, H., Watanabe, D., Machida, C. & Machida, Y. The ACR4 receptor-like kinase is required for surface formation of epidermis-related tissues in Arabidopsis thaliana. Plant J. 39, 298–308 (2004).

    CAS  PubMed  Google Scholar 

  50. Tanaka, H. et al. Novel receptor-like kinase ALE2 controls shoot development by specifying epidermis in Arabidopsis. Development 134, 1643–1652 (2007).

    CAS  PubMed  Google Scholar 

  51. Nodine, M. D. & Tax, F. E. Two receptor-like kinases required together for the establishment of Arabidopsis cotyledon primordia. Dev. Biol. 314, 161–170 (2008).

    CAS  PubMed  Google Scholar 

  52. Tanaka, H. et al. A subtilisin-like serine protease is required for epidermal surface formation in Arabidopsis embryos and juvenile plants. Development 128, 4681–4689 (2001).

    CAS  PubMed  Google Scholar 

  53. Steiner, D. F. The proprotein convertases. Curr. Opin. Chem. Biol. 2, 31–39 (1998).

    CAS  PubMed  Google Scholar 

  54. Chevalier, D. et al. STRUBBELIG defines a receptor kinase-mediated signaling pathway regulating organ development in Arabidopsis. Proc. Natl Acad. Sci. USA 102, 9074–9079 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Yadav, R. K., Fulton, L., Batoux, M. & Schneitz, K. The Arabidopsis receptor-like kinase STRUBBELIG mediates inter-cell-layer signaling during floral development. Dev. Biol. 323, 261–270 (2008).

    CAS  PubMed  Google Scholar 

  56. Yarden, Y. & Sliwkowski, M. X. Untangling the ErbB signalling network. Nature Rev. Mol. Cell Biol. 2, 127–137 (2001).

    CAS  Google Scholar 

  57. Kwak, S. H. & Schiefelbein, J. The role of the SCRAMBLED receptor-like kinase in patterning the Arabidopsis root epidermis. Dev. Biol. 302, 118–131 (2007).

    CAS  PubMed  Google Scholar 

  58. Kwak, S. H., Shen, R. & Schiefelbein, J. Positional signaling mediated by a receptor-like kinase in Arabidopsis. Science 307, 1111–1113 (2005).

    CAS  PubMed  Google Scholar 

  59. Dolan, L. & Roberts, K. The development of cell pattern in the root epidermis. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 350, 95–99 (1995).

    CAS  PubMed  Google Scholar 

  60. Kwak, S. H. & Schiefelbein, J. A feedback mechanism controlling SCRAMBLED receptor accumulation and cell-type pattern in Arabidopsis. Curr. Biol. 18, 1949–1954 (2008).

    CAS  PubMed  Google Scholar 

  61. Kuppusamy, K. T., Chen, A. Y. & Nemhauser, J. L. Steroids are required for epidermal cell fate establishment in Arabidopsis roots. Proc. Natl Acad. Sci. USA 106, 8073–8076 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Casson, S. & Gray, J. E. Influence of environmental factors on stomatal development. New Phytol. 178, 9–23 (2008).

    CAS  PubMed  Google Scholar 

  63. Geisler, M., Nadeau, J. & Sack, F. D. Oriented asymmetric divisions that generate the stomatal spacing pattern in Arabidopsis are disrupted by the too many mouths mutation. Plant Cell 12, 2075–2086 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Nadeau, J. A. & Sack, F. D. Control of stomatal distribution on the Arabidopsis leaf surface. Science 296, 1697–1700 (2002).

    CAS  PubMed  Google Scholar 

  65. Shpak, E. D., McAbee, J. M., Pillitteri, L. J. & Torii, K. U. Stomatal patterning and differentiation by synergistic interactions of receptor kinases. Science 309, 290–293 (2005).

    CAS  PubMed  Google Scholar 

  66. Hara, K., Kajita, R., Torii, K. U., Bergmann, D. C. & Kakimoto, T. The secretory peptide gene EPF1 enforces the stomatal one-cell-spacing rule. Genes Dev. 21, 1720–1725 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Hunt, L. & Gray, J. E. The Signaling Peptide EPF2 Controls Asymmetric Cell Divisions during Stomatal Development. Curr. Biol. 19, 864–869 (2009).

    CAS  PubMed  Google Scholar 

  68. Hara, K. et al. Epidermal cell density is autoregulated via a secretory peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis leaves. Plant Cell Physiol. 50, 1019–1031 (2009).

    CAS  PubMed  Google Scholar 

  69. Berger, D. & Altmann, T. A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana. Genes Dev. 14, 1119–1131 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Von Groll, U., Berger, D. & Altmann, T. The subtilisin-like serine protease SDD1 mediates cell-to-cell signaling during Arabidopsis stomatal development. Plant Cell 14, 1527–1539 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Cartwright, H. N., Humphries, J. A. & Smith, L. G. PAN1: a receptor-like protein that promotes polarization of an asymmetric cell division in maize. Science 323, 649–651 (2009).

    CAS  PubMed  Google Scholar 

  72. Ye, Z. H. Vascular tissue differentiation and pattern formation in plants. Annu. Rev. Plant Biol. 53, 183–202 (2002).

    CAS  PubMed  Google Scholar 

  73. Fisher, K. & Turner, S. PXY, a receptor-like kinase essential for maintaining polarity during plant vascular-tissue development. Curr. Biol. 17, 1061–1066 (2007).

    CAS  PubMed  Google Scholar 

  74. Hirakawa, Y. et al. Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system. Proc. Natl Acad. Sci. USA 105, 15208–15213 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Ito, Y. et al. Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science 313, 842–845 (2006).

    CAS  PubMed  Google Scholar 

  76. Whitford, R., Fernandez, A., De Groodt, R., Ortega, E. & Hilson, P. Plant CLE peptides from two distinct functional classes synergistically induce division of vascular cells. Proc. Natl Acad. Sci. USA 105, 18625–18630 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Boavida, L. C., Becker, J. D. & Feijo, J. A. The making of gametes in higher plants. Int. J. Dev. Biol. 49, 595–614 (2005).

    CAS  PubMed  Google Scholar 

  78. Canales, C., Bhatt, A. M., Scott, R. & Dickinson, H. EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis. Curr. Biol. 12, 1718–1727 (2002).

    CAS  PubMed  Google Scholar 

  79. Jia, G., Liu, X., Owen, H. A. & Zhao, D. Signaling of cell fate determination by the TPD1 small protein and EMS1 receptor kinase. Proc. Natl Acad. Sci. U SA 105, 2220–2225 (2008).

    CAS  Google Scholar 

  80. Yang, S. L. et al. Overexpression of TAPETUM DETERMINANT1 alters the cell fates in the Arabidopsis carpel and tapetum via genetic interaction with EXCESS MICROSPOROCYTES1/EXTRA SPOROGENOUS CELLS. Plant Physiol. 139, 186–191 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Yang, S. L. et al. TAPETUM DETERMINANT1 is required for cell specialization in the Arabidopsis anther. Plant Cell 15, 2792–2804 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhao, D. Z., Wang, G. F., Speal, B. & Ma, H. The excess microsporocytes1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes Dev. 16, 2021–2031 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhao, X. et al. OsTDL1A binds to the LRR domain of rice receptor kinase MSP1, and is required to limit sporocyte numbers. Plant J. 54, 375–387 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Hord, C. L., Chen, C., Deyoung, B. J., Clark, S. E. & Ma, H. The BAM1/BAM2 receptor-like kinases are important regulators of Arabidopsis early anther development. Plant Cell 18, 1667–1680 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Colcombet, J., Boisson-Dernier, A., Ros-Palau, R., Vera, C. E. & Schroeder, J. I. Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASES1 and 2 are essential for tapetum development and microspore maturation. Plant Cell 17, 3350–3361 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Mizuno, S. et al. Receptor-like protein kinase 2 (RPK 2) is a novel factor controlling anther development in Arabidopsis thaliana. Plant J. 50, 751–766 (2007).

    CAS  PubMed  Google Scholar 

  87. Geldner, N., Hyman, D. L., Wang, X., Schumacher, K. & Chory, J. Endosomal signaling of plant steroid receptor kinase BRI1. Genes Dev. 21, 1598–1602 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Le Roy, C. & Wrana, J. L. Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nature Rev. Mol. Cell Biol. 6, 112–126 (2005).

    CAS  Google Scholar 

  89. Robert, S. et al. Endosidin1 defines a compartment involved in endocytosis of the brassinosteroid receptor BRI1 and the auxin transporters PIN2 and AUX1. Proc. Natl Acad. Sci. USA 105, 8464–8469 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Baass, P. C., Di Guglielmo, G. M., Authier, F., Posner, B. I. & Bergeron, J. J. Compartmentalized signal transduction by receptor tyrosine kinases. Trends Cell Biol. 5, 465–470 (1995).

    CAS  PubMed  Google Scholar 

  91. Taub, N., Teis, D., Ebner, H. L., Hess, M. W. & Huber, L. A. Late endosomal traffic of the epidermal growth factor receptor ensures spatial and temporal fidelity of mitogen-activated protein kinase signaling. Mol. Biol. Cell 18, 4698–4710 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Robatzek, S., Chinchilla, D. & Boller, T. Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes Dev. 20, 537–542 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Russinova, E. et al. Heterodimerization and endocytosis of Arabidopsis brassinosteroid receptors BRI1 and AtSERK3 (BAK1). Plant Cell 16, 3216–3229 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Gendron, J. M. & Wang, Z. Y. Multiple mechanisms modulate brassinosteroid signaling. Curr. Opin. Plant. Biol. 10, 436–441 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Santner, A., Calderon-Villalobos, L. I. & Estelle, M. Plant hormones are versatile chemical regulators of plant growth. Nature Chem. Biol. 5, 301–307 (2009).

    CAS  Google Scholar 

  96. Lukowitz, W., Roeder, A., Parmenter, D. & Somerville, C. A MAPKK kinase gene regulates extra-embryonic cell fate in Arabidopsis. Cell 116, 109–119 (2004).

    CAS  PubMed  Google Scholar 

  97. Bayer, M. et al. Paternal control of embryonic patterning in Arabidopsis thaliana. Science 323, 1485–1488 (2009).

    CAS  PubMed  Google Scholar 

  98. Tang, W. et al. BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science 321, 557–560 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Kim, T.-W. et al. Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nature Cell Biol. 11, 1254–1260 (2009).

    CAS  PubMed  Google Scholar 

  100. van Zanten, M., Snoek, L. B., Proveniers, M. C. & Peeters, A. J. The many functions of ERECTA. Trends Plant Sci. 14, 214–218 (2009).

    CAS  PubMed  Google Scholar 

  101. Li, J. et al. BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110, 213–222 (2002).

    CAS  PubMed  Google Scholar 

  102. Chinchilla, D. et al. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448, 497–500 (2007).

    CAS  PubMed  Google Scholar 

  103. De Rybel, B. et al. Chemical inhibition of a subset of Arabidopsis thaliana GSK3-like kinases activates brassinosteroid signaling. Chem. Biol. 16, 594–604 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Gregan, J. et al. Construction of conditional analog-sensitive kinase alleles in the fission yeast Schizosaccharomyces pombe. Nature Protoc. 2, 2996–3000 (2007).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank G. V. Isterdael for assistance in producing the figures and S. Lau, A. Renault, A. Maier and two anonymous referees for critical comments. We wish to apologize to those whose contributions we could not include because of space limitations. This work was supported by the European Molecular Biology organization (postdoctoral fellowship EMBO-ALTF 108-2006 to I.D.S.), Marie Curie Intra-European Fellowship scheme (postdoctoral fellowship FP6 MEIF-CT-2007-041375 to I.D.S.), the Deutsche Forschungsgemeinschaft (Ju 179/12-1 and AFGN 179/15-1 to G.J.), and by grants from the Interuniversity Poles of Attraction Program — Belgian Science Policy (Barn contract) to T.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ive De Smet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Smet, I., Voß, U., Jürgens, G. et al. Receptor-like kinases shape the plant. Nat Cell Biol 11, 1166–1173 (2009). https://doi.org/10.1038/ncb1009-1166

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1009-1166

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing