Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Establishing cell polarity in development

Abstract

Polarity is a common feature of many different cell types, including the Caenorhabditis elegans zygote, the Drosophila oocyte and mammalian epithelial cells. The initial establishment of cell polarity depends on asymmetric cues that lead to reorganization of the cytoskeleton and polarized localization of several cortical proteins that act downstream of the polarization cues. The past year revealed that homologs of the C. elegans par (partitioning defective) genes are also essential for establishing polarity in Drosophila and vertebrate cells. There is growing evidence that the proteins encoded by these genes interact with key regulators of both the actin and the microtubule cytoskeletons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cell polarity in the C. elegans zygote.
Figure 2: Development of female germline cysts in Drosophila.
Figure 3: Polarity in mammalian epithelial cells.

Similar content being viewed by others

References

  1. Kemphues, K. PARsing embryonic polarity. Cell 101, 345–348 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Knoblich, J. A. Cell division: asymmetric cell division during animal development. Naure Rev. Mol. Cell Biol. 2, 11–20 (2001).

    Article  CAS  Google Scholar 

  3. Doe, C. Q. & Bowerman, B. Asymmetric cell division: fly neuroblast meets worm zygote. Curr. Opin. Cell Biol. 13, 68–75 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Matsuzaki, F. Asymmetric division of Drosophila neural stem cells: a basis for neural diversity. Curr. Opin. Neurobiol. 10, 38–44 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Golden, A. Cytoplasmic flow and the establishment of polarity in C. elegans 1-cell embryos. Curr. Opin. Genet. Dev. 10, 414–420 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Rose, L. S. & Kemphues, K. J. Early patterning of the C. elegans embryo. Annu. Rev. Genet. 32, 521–545 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Bowerman, B. & Shelton, C. A. Cell polarity in the early Caenorhabditis elegans embryo. Curr. Opin. Genet. Dev. 9, 390–395 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Goldstein, B. & Hird, S. N. Specification of the anteroposterior axis in Caenorhabditis elegans. Development 122, 1467–1474 (1996).

    CAS  PubMed  Google Scholar 

  9. Sadler, P. L. & Shakes, D. C. Anucleate Caenorhabditis elegans sperm can crawl, fertilize oocytes and direct anterior-posterior polarization of the 1-cell embryo. Development 127, 355–366 (2000).

    CAS  PubMed  Google Scholar 

  10. Wallenfang, M. R. & Seydoux, G. Polarization of the anterior-posterior axis of C. elegans is a microtubule-directed process. Nature 408, 89–92 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. O'Connell, K. F., Maxwell, K. N. & White, J. G. The spd-2 gene is required for polarization of the anteroposterior axis and formation of the sperm asters in the Caenorhabditis elegans zygote. Dev. Biol. 222, 55–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Goldstein, B. When cells tell their neighbors which direction to divide. Dev. Dyn. 218, 23–29 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Kemphues, K. J., Priess, J. R., Morton, D. G. & Cheng, N. S. Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 52, 311–320 (1988).

    Article  CAS  PubMed  Google Scholar 

  14. Grill, S. W., Gonczy, P., Stelzer, E. H. & Hyman, A. A. Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo. Nature 409, 630–633 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Tabuse, Y. et al. Atypical protein kinase C cooperates with PAR-3 to establish embryonic polarity in Caenorhabditis elegans. Development 125, 3607–3614 (1998).

    CAS  PubMed  Google Scholar 

  16. Gotta, M., Abraham, M. C. & Ahringer, J. CDC-42 controls early cell polarity and spindle orientation in C. elegans. Curr. Biol. 11, 482–488 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Kay, A. J. & Hunter, C. P. CDC-42 regulates PAR protein localization and function to control cellular and embryonic polarity in C. elegans. Curr. Biol. 11, 474–481 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Guo, S. & Kemphues, K. J. A non-muscle myosin required for embryonic polarity in Caenorhabditis elegans. Nature 382, 455–458 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Shelton, C. A., Carter, J. C., Ellis, G. C. & Bowerman, B. The nonmuscle myosin regulatory light chain gene mlc-4 is required for cytokinesis, anterior-posterior polarity, and body morphology during Caenorhabditis elegans embryogenesis. J. Cell Biol. 146, 439–451 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rappleye, C. A., Paredez, A. R., Smith, C. W., McDonald, K. L. & Aroian, R. V. The coronin-like protein POD-1 is required for anterior-posterior axis formation and cellular architecture in the nematode Caenorhabditis elegans. Genes Dev. 13, 2838–2851 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pichler, S. et al. OOC-3, a novel putative transmembrane protein required for establishment of cortical domains and spindle orientation in the P(1) blastomere of C. elegans embryos. Development 127, 2063–2073 (2000).

    CAS  PubMed  Google Scholar 

  22. Tagawa, A., Rappleye, C. A. & Aroian, R. V. Pod-2, along with pod-1, defines a new class of genes required for polarity in the early Caenorhabditis elegans embryo. Dev. Biol. 233, 412–424 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Basham, S. E. & Rose, L. S. Mutations in ooc-5 and ooc-3 disrupt oocyte formation and the reestablishment of asymmetric PAR protein localization in two-cell Caenorhabditis elegans embryos. Dev. Biol. 215, 253–263 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Spradling, A. C. in The Development of Drosophila melanogaster (eds. Bate, M. & Martinez-Arias, A.) 1–70 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1993).

    Google Scholar 

  25. Koch, E. A. & Spitzer, R. H. Multiple effects of colchicine on oogenesis in Drosophila: induced sterility and switch of potential oocyte to nurse-cell developmental pathway. Cell Tissue Res. 228, 21–32 (1983).

    Article  CAS  PubMed  Google Scholar 

  26. Pokrywka, N. J. & Stephenson, E. C. Microtubules are a general component of mRNA localization systems in Drosophila oocytes. Dev. Biol. 167, 363–370 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. de Cuevas, M. & Spradling, A. C. Morphogenesis of the Drosophila fusome and its implications for oocyte specification. Development 125, 2781–2789 (1998).

    CAS  PubMed  Google Scholar 

  28. de Cuevas, M., Lee, J. K. & Spradling, A. C. alpha-spectrin is required for germline cell division and differentiation in the Drosophila ovary. Development 122, 3959–3968 (1996).

    CAS  PubMed  Google Scholar 

  29. Lin, H., Yue, L. & Spradling, A. C. The Drosophila fusome, a germline-specific organelle, contains membrane skeletal proteins and functions in cyst formation. Development 120, 947–956 (1994).

    CAS  PubMed  Google Scholar 

  30. Yue, L. & Spradling, A. C. hu-li tai shao, a gene required for ring canal formation during Drosophila oogenesis, encodes a homolog of adducin. Genes Dev. 6, 2443–2454 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. de Cuevas, M., Lilly, M. A. & Spradling, A. C. Germline cyst formation in Drosophila. Annu. Rev. Genet. 31, 405–428 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. McGrail, M. & Hays, T. S. The microtubule motor cytoplasmic dynein is required for spindle orientation during germline cell divisions and oocyte differentiation in Drosophila. Development 124, 2409–2419 (1997).

    CAS  PubMed  Google Scholar 

  33. Liu, Z., Xie, T. & Steward, R. Lis1, the Drosophila homolog of a human lissencephaly disease gene, is required for germline cell division and oocyte differentiation. Development 126, 4477–4488 (1999).

    CAS  PubMed  Google Scholar 

  34. Swan, A., Nguyen, T. & Suter, B. Drosophila Lissencephaly-1 functions with Bic-D and dynein in oocyte determination and nuclear positioning. Nature Cell Biol. 1, 444–449 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Theurkauf, W. E., Alberts, B. M., Jan, Y. N. & Jongens, T. A. A central role for microtubules in the differentiation of Drosophila oocytes. Development 118, 1169–1180 (1993).

    CAS  PubMed  Google Scholar 

  36. Grieder, N. C., de αCuevas, M. & Spradling, A. C. The fusome organizes the microtubule network during oocyte differentiation in Drosophila. Development 127, 4253–4264 (2000).

    CAS  PubMed  Google Scholar 

  37. Clark, I. E., Jan, L. Y. & Jan, Y. N. Reciprocal localization of Nod and kinesin fusion proteins indicates microtubule polarity in the Drosophila oocyte, epithelium, neuron and muscle. Development 124, 461–470 (1997).

    CAS  PubMed  Google Scholar 

  38. Mahowald, A. P. & Strassheim, J. M. Intercellular migration of centrioles in the germarium of Drosophila melanogaster. An electron microscopic study. J. Cell Biol. 45, 306–320 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bolivar, J. et al. Centrosome migration into the Drosophila oocyte is independent of BicD and egl, and of the organisation of the microtubule cytoskeleton. Development 128, 1889–1897 (2001).

    CAS  PubMed  Google Scholar 

  40. Shulman, J. M., Benton, R. & St Johnston, D. The Drosophila homolog of C. elegans PAR-1 organizes the oocyte cytoskeleton and directs oskar mRNA localization to the posterior pole. Cell 101, 377–388 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Tomancak, P. et al. A Drosophila melanogaster homologue of Caenorhabditis elegans par-1 acts at an early step in embryonic-axis formation. Nature Cell Biol. 2, 458–460 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Cox, D. N., Lu, B., Sun, T. Q., Williams, L. T. & Jan, Y. N. Drosophila par-1 is required for oocyte differentiation and microtubule organization. Curr. Biol. 11, 75–87 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Huynh, J. R., Shulman, J. M., Benton, R. & St Johnston, D. PAR-1 is required for the maintenance of oocyte fate in Drosophila. Development 128, 1201–1209 (2001).

    CAS  PubMed  Google Scholar 

  44. Drewes, G., Ebneth, A., Preuss, U., Mandelkow, E. M. & Mandelkow, E. MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell 89, 297–308 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Kuchinke, U., Grawe, F. & Knust, E. Control of spindle orientation in Drosophila by the Par-3-related PDZ- domain protein Bazooka. Curr. Biol. 8, 1357–1365 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Huynh, J. R., Petronczki, M., Knoblich, J. A. & St Johnston, D. Bazooka and PAR-6 are required with PAR-1 for the maintenance of oocyte fate in Drosophila. Curr. Biol. 11, 901–906 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Drubin, D. G. & Nelson, W. J. Origins of cell polarity. Cell 84, 335–344 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Yeaman, C., Grindstaff, K. K. & Nelson, W. J. New perspectives on mechanisms involved in generating epithelial cell polarity. Physiol Rev. 79, 73–98 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Tepass, U., Truong, K., Godt, D., Ikura, M. & Peifer, M. Cadherins in embryonic and neural morphogenesis. Nature Rev. Mol Cell Biol. 1, 91–100 (2000).

    Article  CAS  Google Scholar 

  50. Giancotti, F. G. & Ruoslahti, E. Integrin signaling. Science 285, 1028–1032 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Rajasekaran, A. K., Hojo, M., Huima, T. & Rodriguez, B. E. Catenins and zonula occludens-1 form a complex during early stages in the assembly of tight junctions. J. Cell Biol. 132, 451–463 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Sheth, B. et al. Differentiation of the epithelial apical junctional complex during mouse preimplantation development: a role for rab13 in the early maturation of the tight junction. Mech. Dev. 97, 93–104 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Fleming, T. P., Papenbrock, T., Fesenko, I., Hausen, P. & Sheth, B. Assembly of tight junctions during early vertebrate development. Semin. Cell Dev. Biol. 11, 291–299 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Cereijido, M., Valdes, J., Shoshani, L. & Contreras, R. G. Role of tight junctions in establishing and maintaining cell polarity. Annu. Rev. Physiol. 60, 161–177 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Zahraoui, A., Louvard, D. & Galli, T. Tight junction, a platform for trafficking and signaling protein complexes. J. Cell Biol. 151, F31–36 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Stevenson, B. R. & Keon, B. H. The tight junction: morphology to molecules. Annu. Rev. Cell Dev. Biol. 14, 89–109 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Tsukita, S., Furuse, M. & Itoh, M. Multifunctional strands in tight junctions. Nature Rev. Mol. Cell Biol. 2, 285–293 (2001).

    Article  CAS  Google Scholar 

  58. Izumi, Y. et al. An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, a mammalian homologue of Caenorhabditis elegans polarity protein PAR-3. J. Cell Biol. 143, 95–106 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Qiu, R. G., Abo, A. & Martin, G. S. A human homolog of the C. elegans polarity determinant par-6 links rac and cdc42 to PKCzeta signaling and cell transformation. Curr. Biol. 10, 697–707 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Lin, D. et al. A mammalian Par-3-Par-6 complex implicated in CdC42/Rac1 and aPKC signalling and cell polarity. Nature Cell Biol. 2, 540–547 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Joberty, G., Petersen, C., Gao, L. & Macara, I. G. The cell polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nature Cell Biol. 2, 531–539 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Johansson, A., Driessens, M. & Aspenstrom, P. The mammalian homologue of the Caenorhabditis elegans polarity protein PAR-6 is a binding partner for the Rho GTPases Cdc42 and Rac1. J. Cell Sci. 113, 3267–3275 (2000).

    CAS  PubMed  Google Scholar 

  63. Noda, Y. et al. Human homologues of the Caenorhabditis elegans cell polarity protein PAR6 as an adaptor that links the small GTPases Rac and Cdc42 to atypical protein kinase C. Genes Cells 6, 107–119 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Suzuki, A. et al. Atypical protein kinase C is involved in the evolutionarily conserved par protein complex and plays a critical role in establishing epithelia- specific junctional structures. J. Cell Biol. 152, 1183–1196 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yamanaka, T. et al. PAR-6 regulates aPKC activity in a novel way and mediates cell-cell contact-induced formation of the epithelial junctional complex. Genes Cells 6, 721–731 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Ebnet, K. et al. The cell polarity protein ASIP/PAR-3 directly associates with junctional adhesion molecule (JAM). EMBO J. 20, 3738–3748 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Itoh, M. et al. Junctional adhesion molecule (JAM) binds to PAR-3: a possible mechanism for the recruitment of PAR-3 to tight junctions. J. Cell Biol. 154, 491–497 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ebnet, K., Schulz, C. U., Meyer Zu Brickwedde, M. K., Pendl, G. G. & Vestweber, D. Junctional adhesion molecule interacts with the PDZ domain-containing proteins AF-6 and ZO-1. J. Biol. Chem. 275, 27979–27988 (2000).

    CAS  PubMed  Google Scholar 

  69. Bazzoni, G. et al. Homophilic interaction of junctional adhesion molecule. J. Biol. Chem. 275, 30970–30976 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Kim, S. H., Li, Z. & Sacks, D. B. E-cadherin-mediated cell-cell attachment activates Cdc42. J. Biol. Chem. 275, 36999–37005 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Etienne-Manneville, S. & Hall, A. Integrin-Mediated Activation of Cdc42 Controls Cell Polarity in Migrating Astrocytes through PKCzeta. Cell 106, 489–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Bohm, H., Brinkmann, V., Drab, M., Henske, A. & Kurzchalia, T. V. Mammalian homologues of C. elegans PAR-1 are asymmetrically localized in epithelial cells and may influence their polarity. Curr. Biol. 7, 603–606 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank Christoph Segbert and Soya Kim for confocal images of C. elegans zygotes and Drosophila ovaries, respectively. I would also like to thank Arno Müller, Olaf Bossinger, Kevin Johnson, Christoph Segbert and Eli Knust for critical reading of the manuscript. Work in my laboratory is funded by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wodarz, A. Establishing cell polarity in development. Nat Cell Biol 4, E39–E44 (2002). https://doi.org/10.1038/ncb0202-e39

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0202-e39

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing