Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Genetic analysis by peptide nucleic acid affinity MALDI-TOF mass spectrometry

Abstract

The ability to analyze multiple polymorphic sites rapidly and accurately is crucial in all areas of genetic analysis. We have developed an approach for the detection of multiple point mutations, using allele-specific, mass-labeled, peptide nucleic acid (PNA) hybridization probes, and direct analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The composite mass spectra produced contain peaks of distinct masses corresponding to each allele present, resulting in a mass spectral “fingerprint” for each DNA sample. The hybridization characteristics of PNA:DNA duplexes were found to be highly dependent on both base content and sequence. Results from the analysis of four polymorphic sites contained in exon 4 of the human tyrosinase gene show that this approach is simple, rapid, and accurate with potential applications in many areas of genetic analysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Forrest, S., Cotton, R., Landegren, U., and Southern, E. 1995. How to find all those mutations. Nature Genet. 10: 375–376.

    Article  CAS  Google Scholar 

  2. Caskey, C.T. 1987. Disease diagnosis by recombinant DNA methods. Science 236: 1223–1229.

    Article  CAS  Google Scholar 

  3. Landegren, U., Kaiser, R., Caskey, C.T., and Hood, L. 1988. DNA diagnostics-molecular techniques and automation. Science 242: 229–237.

    Article  CAS  Google Scholar 

  4. Cotton, R. 1989. Detection of single base changes in nucleic acids. J. Biochem. 263: 1–10.

    Article  CAS  Google Scholar 

  5. Saiki, R., Walsh, P.S., Levenson, C., and Erlich, H. 1989. Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proc. Nat. Acad. Sci. USA 86: 6230–6234.

    Article  CAS  Google Scholar 

  6. Wallace, B., Shaffer, J., Murphy, R.F., Bonner, J., Hirose, T., and Ikatura, K. et al. 1979. Hybridization of synthetic oligodeoxy-ribonucleotides to φχ 174 DNA: the effect of a single base pair mismatch. Nucl. Acids. Res. 6: 3543–3557.

    Article  CAS  Google Scholar 

  7. Zhang, Y., Coyne, M., Will, S., Levenson, C., and Kawasaki, E. 1991. Single-base mutational analysis of cancer and genetic diseases using membrane bound modified oligonucleotides. Nucl. Acids Res. 19: 3929–3933.

    Article  CAS  Google Scholar 

  8. Guo, Z., Guilfoyle, R., Thiel, A., Wang, R., and Smith, L.M. 1994. Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotide arrays on glass supports. Nucl. Acids Res. 22: 5456–5465.

    Article  CAS  Google Scholar 

  9. Hillenkamp, F., Karas, M., Beavis, R., and Chait, B. 1991. Matrix-assisted laser desorption-ionization mass spectrometry of biopolymers. Anal. Chem. 63: 1193A–1203A.

    Article  CAS  Google Scholar 

  10. Karas, M., Bachmann, D., Bahr, U., and Hillenkamp, F. 1987. Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int. J. Mass Spectrom. Ion Phys. 78: 53–68.

    Article  CAS  Google Scholar 

  11. Chou, C., Bingham, S., and Williams, P. 1996. Affinity methods for purification of DNA sequencing reaction products for mass spectrometric analysis. Rapid Commun. Mass Spectrom. 10: 1410–1414.

    Article  CAS  Google Scholar 

  12. Köster, H., Tang, K., Fu, D., Braun, A., van den Boom, D., Smith, C.L., et al. 1996. A strategy for rapid and efficient DNA sequencing by mass spectrometry. Nature Biotechnology 14: 1123–1128.

    Article  Google Scholar 

  13. Girault, S., Chassaing, G., Blais, J., Brunot, A., and Bolbach, G. 1996. Coupling of MALDI-TOF mass analysis to the separation of biotinylated peptides by magnetic streptavidin beads. Anal. Chem. 68: 2122–2126.

    Article  CAS  Google Scholar 

  14. Tang, K., Fu, D., Kotter, S., Cotter, R.J., Cantor, C., and Koster, H. 1995. Matrix-assisted laser desorption/ionization mass spectrometry of immobilized duplex DNA probes. Nucl. Acids Res. 23: 3126–3131.

    Article  CAS  Google Scholar 

  15. Jurinke C., van den Boom, B., Jacob, A., Tang, K., Worl, R., and Koster, H. 1996. Analysis of ligase chain reaction products via matrix-assisted laser desorption/ionization time-of-flight-mass spectrometry. Anal. Biochem. 237: 174–181.

    Article  CAS  Google Scholar 

  16. Nielsen, P., Egholm, M., Berg, R., and Buchardt, O. 1991. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254: 1497–1500.

    Article  CAS  Google Scholar 

  17. Egholm, M., Buchardt, O., Nielsen, P., and Berg, R. 1992. Peptide nucleic acids (PNA): oligonucleotide analogues with an achiral peptide backbone. J. Am. Chem. Soc. 114: 1895–1897.

    Article  CAS  Google Scholar 

  18. Egholm, M., Buchardt, O., Christensen, L., Behrens, C., Freier, S.M., Driver, D., et al. 1993. PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen bonding rules. Nature 365: 566–568.

    Article  CAS  Google Scholar 

  19. Tomac, S., Sarkar, M., Ratilainen, T., Wittung, P., Nielsen, P., Borden, B., and Graslund, A. 1996. Ionic effects on the stability and conformation of peptide nucleic acid complexes. J. Am. Chem. Soc. 118: 5544–5552.

    Article  CAS  Google Scholar 

  20. Butler, J., Jiang-Baucom, P., Huang, M., Belgrader, P., and Girard, J. 1996. Peptide nucleic acid characterization by MALDI-TOF mass spectrometry. Anal. Chem. 68: 3283–3287.

    Article  CAS  Google Scholar 

  21. Giebel, L., Strunk, K., and Spritz, R. 1991. Organization and nucleotide sequence of the human tyrosinase gene and a truncated tyrosinase-related segment. Genomics 9: 435–445.

    Article  CAS  Google Scholar 

  22. Tripathi, R., Strunk, K., Giebel, L., Weleber, R., and Spritz, R. 1992. Tyrosinase gene mutations in type I (tyrosinase-deficient) oculocutaneous albinism define two clusters of missense substitutions. Am. J. Med. Genet. 43: 865–871.

    Article  CAS  Google Scholar 

  23. Wu, K., Steding, A., and Becker, C. 1993. Matrix-assisted laser desorption time-of-flight mass spectrometry of oligonucleotides using 3-hydroxypicolinic acid as an ultraviolet-sensitive matrix. Rapid Commun. Mass Spectrom. 7: 142–146.

    Article  CAS  Google Scholar 

  24. Zhu, L., Parr, G., Fitzgerald, M., Nelson, C., and Smith, L.M. 1995. Oligonucleotide fragmentation in MALDI/TOF mass spectrometry using 355 nm radiation. J. Am. Chem. Soc. 117: 6048–6056.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffin, T., Tang, W. & Smith, L. Genetic analysis by peptide nucleic acid affinity MALDI-TOF mass spectrometry. Nat Biotechnol 15, 1368–1372 (1997). https://doi.org/10.1038/nbt1297-1368

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1297-1368

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing