Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective enhancement of gene transfer by steroid-mediated gene delivery

Abstract

The incorporation of transgenes into the host cells' nuclei is problematic using conventional nonviral gene delivery technologies. Here we describe a strategy called steroid-mediated gene delivery (SMGD), which uses steroid receptors as shuttles to facilitate the uptake of transfected DNA into the nucleus. We use glucocorticoid receptors (GRs) as a model system with which to test the principle of SMGD. To this end, we synthesized and tested several bifunctional steroid derivatives, finally focusing on a compound named DR9NP, consisting of a dexamethasone backbone linked to a psoralen moiety using a nine-atom chemical spacer. DR9NP binds to the GR in either its free or DNA-crosslinked form, inducing the translocation of the GR to the nucleus. The expression of transfected DR9NP-decorated reporter plasmids is enhanced in dividing cells: expression of steroid-decorated reporter plasmids depends on the presence of the GR, is independent of the transactivation potential of the GR and correlates with enhanced nuclear accumulation of the transgene in GR-positive cells. The SMGD effect is also observed in cells naturally expressing GRs and is significantly increased in nondividing cell cultures. We propose that SMGD could be used as a platform for selective targeting of transgenes in nonviral somatic gene transfer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Zabner, J., Fasbender, A.J., Moninger, T., Poellinger, K.A. & Welsh, M.J. Cellular and molecular barriers to gene transfer by a cationic lipid. J. Biol. Chem. 270, 18997–19007 (1995).

    Article  CAS  Google Scholar 

  • Capecchi, M.R. High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 22, 479–488 (1980).

    Article  CAS  Google Scholar 

  • Felgner, P.L. et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA 84, 7413–7417 (1987).

    Article  CAS  Google Scholar 

  • Wilke, M., Fortunati, E., van den Broek, M., Hoogeveen, A.T. & Scholte, B.J. Efficacy of a peptide-based gene delivery system depends on mitotic activity. Gene Ther. 3, 1133–1142 (1996).

    CAS  PubMed  Google Scholar 

  • Coonrod, A., Li, F.Q. & Horwitz, M. On the mechanism of DNA transfection: efficient gene transfer without viruses. Gene Ther. 4, 1313–1321 (1997).

    Article  CAS  Google Scholar 

  • Lechardeur, D. et al. Metabolic instability of plasmid DNA in the cytosol: a potential barrier to gene transfer. Gene Ther. 6, 482–497 (1999).

    Article  CAS  Google Scholar 

  • Whittaker, G.R. & Helenius, A. Nuclear import and export of viruses and virus genomes. Virology 246, 1–23 (1998).

    Article  CAS  Google Scholar 

  • Rusconi, S. & Ceppi, M. Vectors for gene delivery. In Molecular therapy of rheumatoid arthritis. (ed. Gay, S.) (Humana Press, New York, 2001), in press.

  • Sebestyen, M.G. et al. DNA vector chemistry: the covalent attachment of signal peptides to plasmid DNA. Nat. Biotechnol. 16, 80–85 (1998).

    Article  CAS  Google Scholar 

  • Zanta, M.A., Belguise-Valladier, P. & Behr, J.P. Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc. Natl. Acad. Sci. USA 96, 91–96 (1999).

    Article  CAS  Google Scholar 

  • Branden, L.J., Mohamed, A.J. & Smith, C.I. A peptide nucleic acid–nuclear localization signal fusion that mediates nuclear transport of DNA. Nat. Biotechnol. 17, 784–787 (1999).

    Article  CAS  Google Scholar 

  • Mangelsdorf, D.J. et al. The nuclear receptor superfamily: the second decade. Cell 83, 835–839 (1995).

    Article  CAS  Google Scholar 

  • Silverstein, A.M. et al. Different regions of the immunophilin FKBP52 determine its association with the glucocorticoid receptor, hsp90 and cytoplasmic dynein. J. Biol. Chem. 274, 36980–36986 (1999).

    Article  CAS  Google Scholar 

  • Miyata, Y. & Yahara, I. Cytoplasmic 8 S glucocorticoid receptor binds to actin filaments through the 90-kDa heat shock protein moiety. J. Biol. Chem. 266, 8779–8783 (1991).

    CAS  PubMed  Google Scholar 

  • Pratt, W.B., Krishna, P. & Olsen, L.J. Hsp90-binding immunophilins in plants: the protein movers. Trends Plant Sci. 6, 54–58 (2001).

    Article  CAS  Google Scholar 

  • Wright, A.P. et al. Structure and function of the glucocorticoid receptor. J. Steroid Biochem. Mol. Biol. 47, 11–19 (1993).

    Article  CAS  Google Scholar 

  • Sackey, F.N., Hache, R.J., Reich, T., Kwast-Welfeld, J. & Lefebvre, Y.A. Determinants of subcellular distribution of the glucocorticoid receptor. Mol. Endocrinol. 10, 1191–1205 (1996).

    CAS  PubMed  Google Scholar 

  • Frey, F., Frey, B., Wehrli, H.-U. & Rusconi, S. Conjugates of DNA interacting groups with steroid hormones for use as nucleic acid transfection agents. PCT/CH WO 00/11018. WO 00/11018. (2000).

  • Giguere, V., Hollenberg, S.M., Rosenfeld, M.G. & Evans, R.M. Functional domains of the human glucocorticoid receptor. Cell 46, 645–652 (1986).

    Article  CAS  Google Scholar 

  • Miesfeld, R. et al. Genetic complementation of a glucocorticoid receptor deficiency by expression of cloned receptor cDNA. Cell 46, 389–399 (1986).

    Article  CAS  Google Scholar 

  • Hoeck, W., Rusconi, S. & Groner, B. Downregulation and phosphorylation of glucocorticoid receptors in cultured cells. Investigations with a monospecific antiserum against a bacterially expressed receptor fragment. J. Biol. Chem. 264, 14396–14402 (1989).

    CAS  PubMed  Google Scholar 

  • Hart, L., Lim, S., Adcock, I., Barnes, P.J. & Chung, K.F. Effects of inhaled corticosteroid therapy on expression and DNA-binding activity of nuclear factor kappaB in asthma. Am. J. Respir. Crit. Care Med. 161, 224–231 (2000).

    Article  CAS  Google Scholar 

  • Jaffuel, D. et al. Transcriptional potencies of inhaled glucocorticoids. Am. J. Respir. Crit. Care Med. 162, 57–63 (2000).

    Article  CAS  Google Scholar 

  • Kohler, M. et al. Cloning of two novel human importin-alpha subunits and analysis of the expression pattern of the importin-alpha protein family. FEBS Lett. 417, 104–108 (1997).

    Article  CAS  Google Scholar 

  • Reid, P., Kantoff, P. & Oh, W. Antiandrogens in prostate cancer. Invest. New Drugs 17, 271–284 (1999).

    Article  CAS  Google Scholar 

  • Brinkmann, A.O. & Trapman, J. Prostate cancer schemes for androgen escape. Nat. Med. 6, 628–629 (2000).

    Article  CAS  Google Scholar 

  • Kurebayashi, J. et al. Expression levels of estrogen receptor-alpha, estrogen receptor-beta, coactivators and corepressors in breast cancer. Clin. Cancer Res. 6, 512–518 (2000).

    CAS  PubMed  Google Scholar 

  • Speirs, V., Malone, C., Walton, D.S., Kerin, M.J. & Atkin, S.L. Increased expression of estrogen receptor beta mRNA in tamoxifen-resistant breast cancer patients. Cancer Res. 59, 5421–5424 (1999).

    CAS  PubMed  Google Scholar 

  • Hagstrom, J.E. et al. Nuclear import of DNA in digitonin-permeabilized cells. J. Cell Sci. 110, 2323–2331 (1997).

    CAS  PubMed  Google Scholar 

  • Zennou, V. et al. HIV-1 genome nuclear import is mediated by a central DNA flap. Cell 101, 173–185 (2000).

    Article  CAS  Google Scholar 

  • Zelphati, O., Liang, X., Hobart, P. & Felgner, P.L. Gene chemistry: functionally and conformationally intact fluorescent plasmid DNA. Hum. Gene Ther. 10, 15–24 (1999).

    Article  CAS  Google Scholar 

  • Heim, R., Cubitt, A.B. & Tsien, R.Y. Improved green fluorescence. Nature 373, 664 (1995).

    Article  Google Scholar 

  • Lanz, R.B., Wieland, S., Hug, M. & Rusconi, S. A transcriptional repressor obtained by alternative translation of a trinucleotide repeat. Nucleic Acids Res. 23, 138–145 (1995).

    Article  CAS  Google Scholar 

  • Dean, D.A. et al. Serine/threonine protein phosphatase (PP5) participates in the regulation of glucocorticoid receptor nucleocytoplasmic shuttling. BMC Cell Biology 2, 6–13 (2001).

    Article  CAS  Google Scholar 

  • Chartier, C. et al. Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli. J. Virol. 70, 4805–4810 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heider, H., Brenz Verca, S., Rusconi, S. & Asmis, R. Comparison of lipid-mediated and adenoviral gene transfer in human monocyte-derived macrophages and COS-7 cells. Biotechniques 28, 260–265, 268–270 (2000).

    Article  CAS  Google Scholar 

  • Graham, F. & Prevec, L. Manipulation of adenovirus vectors. In Methods in molecular biology. (ed. Murray, E.J.) 109–128 (Humana Press, Clifton, NJ; 1991).

  • Burleson, F., Chambers, T. & Wiedbrauk, D. Virology: a laboratory manual. (Academic Press, San Diego, CA; 1992).

    Chapter  Google Scholar 

  • Precious, B. & Russell, W.C. Growth, purification and titration of adenoviruses. In Virology: a practical approach. (ed. Mahy, B.W.J.) 128–152 (IRL press, Oxford; 1991).

  • Rusconi, S. & Yamamoto, K.R. Functional dissection of the hormone and DNA binding activities of the glucocorticoid receptor. EMBO J. 6, 1309–1315 (1987).

    Article  CAS  Google Scholar 

  • Gametchu, B. & Harrison, R.W. Characterization of a monoclonal antibody to the rat liver glucocorticoid receptor. Endocrinology 114, 274–279 (1984).

    Article  CAS  Google Scholar 

  • Maniatis, T., Fritsch, E.F. & Sambrook, J. Molecular cloning, a laboratory manual. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; 1989).

  • Hearst, J.E. Psoralen photochemistry. Annu. Rev. Biophys. Bioeng. 10, 69–86 (1981).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Heim and M. Imhof, respectively, for the gift of the GFP cDNA and the expression vector for luciferase. Our thanks go also to B. Huse for the assembly of recombinant adenoviral vectors for GR. The contributions of P. Matthey, P. de los Rios and M. Woodle for assistance, math coaching and critical discussions are also gratefully acknowledged. This work has been supported by the Canton of Fribourg, the Canton of Bern, The Inselspital and in large part by the Swiss National Research Program NFP37 “somatic gene therapy” (http://www.unifr.ch/nfp37).

Author information

Authors and Affiliations

Authors

Additional information

The online version of the original article can be found at 10.1038/nbt1201-1118

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rebuffat, A., Bernasconi, A., Ceppi, M. et al. Selective enhancement of gene transfer by steroid-mediated gene delivery. Nat Biotechnol 19, 1155–1161 (2001). https://doi.org/10.1038/nbt1201-1155

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1201-1155

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing