Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Genetically engineered large animal model for studying cone photoreceptor survival and degeneration in retinitis pigmentosa

Abstract

Patients with retinitis pigmentosa (RP) typically develop night blindness early in life due to loss of rod photoreceptors. The remaining cone photoreceptors are the mainstay of their vision; however, over years or decades, these cones slowly degenerate, leading to blindness. We created transgenic pigs that express a mutated rhodopsin gene (Pro347Leu). Like RP patients with the same mutation, these pigs have early and severe rod loss; initially their cones are relatively spared, but these surviving cones slowly degenerate. By age 20 months, there is only a single layer of morphologically abnormal cones and the cone electroretinogram is markedly reduced. Given the strong similarities in phenotype to that of RP patients, these transgenic pigs will provide a large animal model for study of the protracted phase of cone degeneration found in RP and for preclinical treatment trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dryja, T.P. and Berson, E.L. 1995. Retinitis pigmentosa and allied diseases: Implications of genetic heterogeneity. Invest Ophthalmol. Vis. Sci. 36: 1197–1200.

    CAS  PubMed  Google Scholar 

  2. Gal, A., Apfelstedt-Sylla, E., Janecke, A.R. and Zrenner, E. 1997. Rhodopsin mutations in inherited retinal dystrophies and dysfunctions. Progress in Retinal and Eye Research 16: 51–79.

    Article  CAS  Google Scholar 

  3. Massof, R.W. and Finkelstein, D. 1987. A two-stage hypothesis for the natural course of retinitis pigmentosa, pp. 29–58 in Advances in the biosciences, Vol. 62. Zrenner, E., Krastel, H., and Goebel, H.-H. (eds.) Pergamon Journals Ltd, Elmsford, NY.

    Google Scholar 

  4. Travis, G.H. 1997. Insights from a lost visual pigment. Nature Genetics 15: 115–117.

    Article  CAS  Google Scholar 

  5. Steinberg, R.H., Flannery, J.G., Naash, M., Oh, P., Matthes, M.T., Yasumura, D. et al. 1996. Transgenic rat models of inherited retinal degeneration caused by mutant opsin genes. Invest. Ophthalmol. Vis. Sci. 37: S698.

    Google Scholar 

  6. Humphries, M.M., Rancourt, D., Farrar, G.J., Kenna, P., Hazel, M., Bush, R.A. et al. 1997. Retinopathy induced in mice by targeted disruption of the rhodopsin gene. Nature Genetics 15: 216–219.

    Article  CAS  Google Scholar 

  7. Acland, G.M., Fletcher, R.T., Gentleman, S., Chader, G.J. and Aguirre, G.D. 1989. Non-allelism of three genes (rcd1, rcd2 and erd) for early-onset hereditary retinal degeneration. Exp. Eye Res. 49: 983–998.

    Article  CAS  Google Scholar 

  8. Suber, M.L., Pittler, S.J., Qin, N., Wright, G.C., Holcombe, V., Lee, R.H. et al. 1993. Irish setter dogs affected with rod/cone dysplasia contain a nonsense mutation in the rod cGMP phosphodiesterase beta-subunit gene. Proc. Natl. Acad. Sci. USA 90: 3968–3972.

    Article  CAS  Google Scholar 

  9. Narfstrom, K. 1983. Hereditary progressive retinal atrophy in the Abyssinian cat. J. Hered. 74: 273–276.

    Article  CAS  Google Scholar 

  10. Semple-Rowland, S.L., Gorczyca, W.A., Buczylko, J., Helekar, B.S., Ruiz, C.C., Subbaraya, I. et al. 1996. Expression of GCAP1 and GCAP2 in the retinal degeneration (rd) chicken retina. FEBS Lett. 385: 47–52.

    Article  CAS  Google Scholar 

  11. Chang, G.-Q., Hao, Y. and Wong, F. 1993. Final common pathway of photoreceptor death in rd, rds, and rhodopsin mutant mice. Neuron 11: 595–605.

    Article  CAS  Google Scholar 

  12. Portera-Cailliau, C., Sung, C.-H., Nathans, J. and Adler, R. 1994. Apoptotic photoreceptor cell death in mouse models of retinitis pigmentosa. Proc. Natl. Acad. Sci. USA 91: 974–978.

    Article  CAS  Google Scholar 

  13. Lolley, R.N., Rong, H. and Craft, C.M. 1994. Linkage of photoreceptor degeneration by apoptosis with inherited defect in phototransduction. Invest. Ophthalmol. Vis. Sci. 35: 358–362.

    CAS  PubMed  Google Scholar 

  14. Chen, J., Flannery, J.G., LaVail, M.M., Steinberg, R.H., Xu, J. and Simon, M.I. 1996. bcl-2 overexpression reduces apoptotic photoreceptor cell death in three different retinal degenerations. Proc. Natl. Acad. Sci. USA 93: 7042–7047.

    Article  CAS  Google Scholar 

  15. Hafezi, F., Steinbach, J.P., Marti, A., Munz, K., Wang, Z.Q., Wagner, E.F. et al. 1997. The absence of c-fos prevents light-induced apoptotic cell death of photoreceptors in retinal degeneration in vivo. Nature Medicine 3: 346–349.

    Article  CAS  Google Scholar 

  16. Aebischer, P., Schluep, M., Deglon, N., Joseph, J.-M., Hirt, L., Heyd, B. et al. 1996. Intrathecal delivery of CNTF using encapsulated genetically modified xenogeneic cells in amyotrophic lateral sclerosis patients. Nature Medicine 2: 696–699.

    Article  CAS  Google Scholar 

  17. Prince, J.H., Diesem, C.D., Eglitis, I. and Ruskell, G.L. 1960. The pig, pp. 210–233 in Anatomy and histology of the eye and orbit in domestic animals. Charles C. Thomas, Springfield, IL.

    Google Scholar 

  18. Gerke, C.G. Jr, Hao, Y. and Wong, F. 1995. Topography of rods and cones in the retina of the domestic pig. Hong Kong Medical Journal 1: 302–308.

    Google Scholar 

  19. Hammer, R.E., Pursel, V.G., Rexroad, C.E. Jr, Wall, R.J., Bolt, D.J., Ebert, K.M. et al. 1985. Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315: 680–683.

    Article  CAS  Google Scholar 

  20. Pursel, V.G., Pinkert, C.A., Miller, K.F., Bolt, D.J., Campbell, R.G., Palmiter, R.D. et al. 1989. Genetic engineering of livestock. Science 244: 1281–1288.

    Article  CAS  Google Scholar 

  21. Sharma, A., Martin, M.J., Okabe, J.F., Truglio, R.A., Dhanjal, N.K., Logan, J.S. and Kumar, R. 1994. An isologous porcine promoter permits high level expression of human hemoglobin in transgenic swine. Bio/Technology 12: 55–59.

    CAS  PubMed  Google Scholar 

  22. Fodor, W.L., Williams, B.L., Matis, L.A., Madri, J.A., Rollins, S.A., Knight, J.W. et al. 1994. Expression of a functional human complement inhibitor in a transgenic pig as a model for the prevention of xenogeneic hyperacute organ rejection. Proc. Natl. Acad. Sci. USA 91: 11153–11157.

    Article  CAS  Google Scholar 

  23. Dryja, T.P., McGee, T.L., Hahn, L.B., Cowley, G.S., Olsson, J.E., Reichel, E. et al. 1990. Mutations within the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa. N. Engl. J. Med. 323: 1302–1307.

    Article  CAS  Google Scholar 

  24. Berson, E.L., Rosner, B., Sandberg, M.A., Weigel-DiFranco, C. and Dryja, T.P. 1991. Ocular findings in patients with autosomal dominant retinitis pigmentosa and rhodopsin, proline-347-leucine. Am. J. Ophthalmol. 111: 614–623.

    Article  CAS  Google Scholar 

  25. Shiono, T., Hotta, Y., Noro, M., Sakuma, T., Tamai, M., Hayakawa, M. et al. 1992. Clinical features of Japanese family with autosomal dominant retinitis pigmentosa caused by point mutation in codon 347 of rhodopsin gene. Jpn. J. Ophthalmol. 36: 69–75.

    CAS  PubMed  Google Scholar 

  26. Fujiki, K., Hotta, Y., Hayakawa, M., Sakuma, H., Shiono, T., Noro, M. et al. 1992. Point mutations of rhodopsin gene found among Japanese families with autosomal dominant retinitis pigmentosa (ADRP). Jpn. J. Hum. Genet. 37: 125–132.

    Article  CAS  Google Scholar 

  27. Apfelstedt-Sylla, E., Kunisch, M., Horn, M., Ruether, K., Gal, A., Zrenner, E. 1992. Diffuse loss of rod function in autosomal dominant retinitis pigmentosa with pro-347-leu mutation of rhodopsin. Ger. J. Ophthalmol. 1: 319–327.

    CAS  PubMed  Google Scholar 

  28. Wall, R.J., Pursel, V.G., Hammer, R.E. and Brinster, R.L. 1985. Development of porcine ova that were centrifuged to permit visualization of pronuclei and nuclei. Biol. Reprod. 32: 645–651.

    Article  CAS  Google Scholar 

  29. Nathans, J., 1992. Structure, function, and genetics. Biochemistry 31: 4923–4931.

    Article  CAS  Google Scholar 

  30. Feeney-Burns, L., Malinow, M.R., Klein, M.L. and Neuringer, M. 1981. Maculopathy in cynomolgus monkeys. Arch. Ophthalmol. 99: 664–672.

    Article  CAS  Google Scholar 

  31. Tso, M.O.M. 1989. Experiments on visual cells by nature and man: In search of treatment for photoreceptor degeneration. Invest. Ophthalmol. Vis. Sci. 30: 2430–2454.

    CAS  PubMed  Google Scholar 

  32. Hood, D.C. and Birch, D.G. 1994. Rod phototransduction in retinitis pigmentosa: estimation and interpretation of parameters derived from the rod a-wave. Invest. Ophthalmol. Vis. Sci. 35: 2948–2961.

    CAS  PubMed  Google Scholar 

  33. Reiser, M.A., Williams, T.P. and Pugh, E.N., 1996. The effect of light history on the aspartate-isolated fast-Pill responses of the albino rat retina. Invest. Ophthalmol. Vis. Sci. 37: 221–229.

    CAS  PubMed  Google Scholar 

  34. Olsson, J.E., Gordon, J.W., Pawlyk, B.S., Roof, D., Hayes, A., Molday, R.S. et al. 1992. Transgenic mice with a rhodopsin mutation (Pro23His): a mouse model for autosomal dominant retinitis pigmentosa. Neuron 9: 815–830.

    Article  CAS  Google Scholar 

  35. Sung, C.H., Makino, C., Baylor, D. and Nathans, J. 1994. A rhodopsin gene responsible for autosomal dominant retinitis pigmentosa results in a protein that is defective in localization to the photoreceptor outer segment. J. Neurosci. 14: 5818–5833.

    Article  CAS  Google Scholar 

  36. Li, T., Snyder, W.K., Olsson, J.E. and Dryja, T.P. 1996. Transgenic mice carrying the dominant rhodopsin mutation P347S: Evidence for defective vectorial transport of rhodopsin to the outer segments. Proc. Natl. Acad. Sci. USA 93: 14176–14181.

    Article  CAS  Google Scholar 

  37. Huang, P.C., Gaitan, A.E., Hao, Y., Petters, R.M. and Wong, F. 1993. Cellular interactions implicated in the mechanism of photoreceptor degeneration in transgenic mice expressing a mutant rhodopsin gene. Proc. Natl. Acad. Sci. USA 90: 8484–8488.

    Article  CAS  Google Scholar 

  38. Roof, D.J., Adamian, M. and Hayes, A. 1994. Rhodopsin accumulation at abnormal sites in retinas of mice with a human P23H rhodopsin transgene. Invest. Ophthalmol. Vis. Sci. 35: 4049–4062.

    CAS  PubMed  Google Scholar 

  39. Wong, F. 1997. Investigating retinitis pigmentosa: a laboratory scientist's perspective. Progress in Retinal and Eye Research 16: 353–373.

    Article  Google Scholar 

  40. Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular cloning, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  41. Kunkel, T.A., Roberts, J.D. and Zakour, R.A. 1987. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 154: 367–382.

    Article  CAS  Google Scholar 

  42. Jacobson, S.G., Kemp, C.M., Borruat, F.-X., Chaitin, M.H. and Faulkner, D.J. 1987. Rhodopsin topography and rod-mediated function in cats with the retinal degeneration of taurine deficiency. Exp. Eye Res. 45: 481–490.

    Article  CAS  Google Scholar 

  43. Kemp, C.M., Jacobson, S.G., Borruat, F.-X. and Chaitin, M.H. 1989. Rhodopsin levels and retinal function in cats during recovery from vitamin A deficiency. Exp. Eye Res. 49: 49–65.

    Article  CAS  Google Scholar 

  44. Cideciyan, A.V. and Jacobson, S.G. 1996. An alternative phototransduction model for human rod and cone ERG a-waves: normal parameters and variation with age. Vision Res. 36: 2609–2621.

    Article  CAS  Google Scholar 

  45. Hood, D.C. and Birch, D.G. 1990. A quantitative measure of the electrical activity of human rod photoreceptors using electroretinograms. Visual Neuroscience 5: 379–387.

    Article  CAS  Google Scholar 

  46. Lamb, T.D. and Pugh, E.N., 1992. A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors. J. Physiol. 449: 719–758.

    Article  CAS  Google Scholar 

  47. Jacobson, S.G., Kemp, C.M., Cideciyan, A.V., Macke, J.P., Sung, C.-H., and Nathans, J. 1994. Phenotypes of stop codon and splice site rhodopsin mutations causing retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 35: 2521–2534.

    CAS  Google Scholar 

  48. Jacobson, S.G., Voigt, W.J., Parel, J.-M., Nghiem-Phu, L., Myers, S.W., and Patella, V.M. 1986. Automated light- and dark-adapted perimetry for evaluating retinitis pigmentosa. Ophthalmology 93: 1604–1611.

    Article  CAS  Google Scholar 

  49. Jacobson, S.G., Kemp, C.M., Sung, C.-H. and Nathans, J. 1991. Retinal function and rhodopsin levels in autosomal dominant retinitis pigmentosa with rhodopsin mutations. Amer. J. Ophthalmol. 112: 256–271.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fulton Wong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petters, R., Alexander, C., Wells, K. et al. Genetically engineered large animal model for studying cone photoreceptor survival and degeneration in retinitis pigmentosa. Nat Biotechnol 15, 965–970 (1997). https://doi.org/10.1038/nbt1097-965

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1097-965

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing