Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epigenetic regulation of gene structure and function with a cell-permeable Cre recombinase

Abstract

Studies of mammalian gene function are hampered by temporal limitations in which phenotypes occurring at one stage of development interfere with analysis at later stages. Moreover, phenotypes resulting from altered gene activity include both direct and indirect effects that may be difficult to distinguish. In the present study, recombinant fusion proteins bearing the 12 amino acid membrane translocation sequence (MTS) from the Kaposi fibroblast growth factor (FGF-4) were used to transduce enzymatically active Cre proteins directly into mammalian cells. High levels of recombination were observed in a variety of cultured cell types and in all tissues examined in mice following intraperitoneal administration. This represents the first use of protein transduction to induce the enzymatic conversion of a substrate in living cells and animals and provides a rapid and efficient means to manipulate mammalian gene structure and function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Recombinant Cre Proteins and intracellular uptake.
Figure 2: In vivo Cre-mediated recombination.
Figure 3: Cre-mediated recombination ex vivo.
Figure 4: Cre-mediated recombination in mice.
Figure 5: Histological examination of β-galactosidase expression.
Figure 6: Time course of lacZ expression in splenocytes and thymocytes from Cre-treated mice.

Similar content being viewed by others

References

  1. Nagy, A. Cre recombinase: the universal reagent for genome tailoring. Genetics 26, 99–109 (2000).

    CAS  Google Scholar 

  2. Sauer, B. Inducible gene targeting in mice using the Cre/lox system. Methods 14, 381–392 (1998).

    Article  CAS  Google Scholar 

  3. Gu, H., Marth, J.D., Orban, P.C., Mossmann, H. & Rajewsky, K. Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265, 103–106 (1994).

    Article  CAS  Google Scholar 

  4. Betz, U.A., Vosshenrich, C.A., Rajewsky, K. & Muller, W. Bypass of lethality with mosaic mice generated by Cre-loxP-mediated recombination. Curr. Biol. 6, 1307–1316 (1996).

    Article  CAS  Google Scholar 

  5. Kuhn, R., Schwenk, F., Aguet, M. & Rajewsky, K. Inducible gene targeting in mice. Science 269, 1427–1429 (1995).

    Article  CAS  Google Scholar 

  6. Zou, Y.R., Muller, W., Gu, H. & Rajewsky, K. Cre-loxP-mediated gene replacement: a mouse strain producing humanized antibodies. Curr. Biol. 4, 1099–1103 (1994).

    Article  CAS  Google Scholar 

  7. Sauer, B. & Henderson, N. Targeted insertion of exogenous DNA into the eukaryotic genome by the Cre recombinase. New Biol. 2, 441–449 (1990).

    CAS  PubMed  Google Scholar 

  8. Smith, A.J. et al. A site-directed chromosomal translocation induced in embryonic stem cells by Cre-loxP recombination. Nat. Genet. 9, 376–385 (1995).

    Article  CAS  Google Scholar 

  9. Van Deursen, J., Fornerod, M., Van Rees, B. & Grosveld, G. Cre-mediated site-specific translocation between nonhomologous mouse chromosomes. Proc. Natl. Acad. Sci. USA 92, 7376–7380 (1995).

    Article  CAS  Google Scholar 

  10. Justice, M.J., Zheng, B., Woychik, R.P. & Bradley, A. Using targeted large deletions and high-efficiency N-ethyl-N-nitrosourea mutagenesis for functional analyses of the mammalian genome. Methods 13, 423–436 (1997).

    Article  CAS  Google Scholar 

  11. Zheng, B. et al. Engineering a mouse balancer chromosome. Nat. Genet. 22, 375–378 (1999).

    Article  CAS  Google Scholar 

  12. Su, H., Wang, X. & Bradley, A. Nested chromosomal deletions induced with retroviral vectors in mice. Nat. Genet. 24, 92–95 (2000).

    Article  CAS  Google Scholar 

  13. Lakso, M. et al. Targeted oncogene activation by site-specific recombination in transgenic mice. Proc. Natl. Acad. Sci. USA 89, 6232–6236 (1992).

    Article  CAS  Google Scholar 

  14. Fiering, S., Kim, C.G., Epner, E.M. & Groudine, M. An “in–out” strategy using gene targeting and FLP recombinase for the functional dissection of complex DNA regulatory elements: analysis of the beta-globin locus control region. Proc. Natl. Acad. Sci. USA 90, 8469–8473 (1993).

    Article  CAS  Google Scholar 

  15. Russ, A.P. et al. Identification of genes induced by factor deprivation in hematopoietic cells undergoing apoptosis using gene-trap mutagenesis and site-specific recombination. Proc. Natl. Acad. Sci. USA 93, 15279–15284 (1996).

    Article  CAS  Google Scholar 

  16. Lin, Y.Z., Yao, S.Y., Veach, R.A., Torgerson, T.R. & Hawiger, J. Inhibition of nuclear translocation of transcription factor NF-kappa B by a synthetic peptide containing a cell membrane-permeable motif and nuclear localization sequence. J. Biol. Chem. 270, 14255–14258 (1995).

    Article  CAS  Google Scholar 

  17. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71 (1999).

    Article  CAS  Google Scholar 

  18. Anton, M. & Graham, F.L. Site-specific recombination mediated by an adenovirus vector expressing the Cre recombinase protein: a molecular switch for control of gene expression. J. Virol. 69, 4600–4606 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kanegae, Y. et al. Efficient gene activation in mammalian cells by using recombinant adenovirus expressing site-specific Cre recombinase. Nucleic Acids Res. 23, 3816–3821 (1995).

    Article  CAS  Google Scholar 

  20. Rohlmann, A., Gotthardt, M., Willnow, T.E., Hammer, R.E. & Herz, J. Sustained somatic gene inactivation by viral transfer of Cre recombinase. Nat. Biotechnol. 14, 1562–1565 (1996).

    Article  CAS  Google Scholar 

  21. Feil, R. et al. Ligand-activated site-specific recombination in mice. Proc. Natl. Acad. Sci. USA 93, 10887–10890 (1996).

    Article  CAS  Google Scholar 

  22. Kellendonk, C. et al. Regulation of Cre recombinase activity by the synthetic steroid RU 486. Nucleic Acids Res. 24, 1404–1411 (1996).

    Article  CAS  Google Scholar 

  23. Schwarze, S.R., Ho, A., Vocero-Akbani, A. & Dowdy, S.F. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285, 1569–1572 (1999).

    Article  CAS  Google Scholar 

  24. Yan Liu, X. et al. Peptide-directed suppression of a pro-inflammatory cytokine response. J. Biol. Chem. 275, 16774–16778 (2000).

    Article  Google Scholar 

  25. Perez, F. et al. Antennapedia homeobox as a signal for the cellular internalization and nuclear addressing of a small exogenous peptide. J. Cell. Sci. 102, 717–722 (1992).

    CAS  PubMed  Google Scholar 

  26. Hawiger, J. Noninvasive intracellular delivery of functional peptides and proteins. Curr. Opin. Chem. Biol. 3, 89–94 (1999).

    Article  CAS  Google Scholar 

  27. Schwartz, J.J. & Zhang, S. Peptide-mediated cellular delivery. Curr. Opin. Mol. Ther. 2, 162–167. (2000).

    CAS  PubMed  Google Scholar 

  28. Schwarze, S.R., Hruska, K.A. & Dowdy, S.F. Protein transduction: unrestricted delivery into all cells? Trends Cell Biol. 10, 290–295 (2000).

    Article  CAS  Google Scholar 

  29. Rojas, M., Donahue, J.P., Tan, Z. & Lin, Y.Z. Genetic engineering of proteins with cell membrane permeability. Nat. Biotechnol. 16, 370–375 (1998).

    Article  CAS  Google Scholar 

  30. Kolb, A.F. & Siddell, S.G. Genomic targeting with an MBP–Cre fusion protein. Gene 183, 53–60 (1996).

    Article  CAS  Google Scholar 

  31. Morgenstern, J.P. & Land, H. Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 18, 3587–3596 (1990).

    Article  CAS  Google Scholar 

  32. Pear, W.S., Nolan, G.P., Scott, M.L. & Baltimore, D. Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 90, 8392–8396 (1993).

    Article  CAS  Google Scholar 

  33. Beddinton, R.S. & Lawson, K.A. In Postimplantation mammalian embryos. (eds Copp, A.J. & Cockroft, D.L.) 267–292 (IRL Press, New York, NY; 1990).

    Google Scholar 

Download references

Acknowledgements

We thank Mark Magnuson and Yao Zhong Lin for providing S4R ES cells and pMTS2 plasmid, respectively, and Jacek Hawiger, Dean Ballard, and Gene Oltz for critical reading of this manuscript. This work was supported by a Public Health Service Grant (R01RR13166 to H.E.R.) and by a grant from the Kleberg Foundation. Additional support was provided by a Cancer Center Support grant (P30CA42014) to the Vanderbilt-Ingram Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Earl Ruley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jo, D., Nashabi, A., Doxsee, C. et al. Epigenetic regulation of gene structure and function with a cell-permeable Cre recombinase. Nat Biotechnol 19, 929–933 (2001). https://doi.org/10.1038/nbt1001-929

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1001-929

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing