Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

A high efficiency technique for the generation of transgenic sugar beets from stomatal guard cells

Abstract

An optimized protocol has been developed for the efficient and rapid genetic modification of sugar beet (Beta vulgaris L.). A polyethylene glycol-mediated DNA transformation technique could be applied to protoplast populations enriched specifically for a single totipotent cell type derived from stomatal guard cells, to achieve high transformation frequencies. Bialaphos resistance, conferred by the pat gene, produced a highly efficient selection system. The majority of plants were obtained within 8 to 9 weeks and were appropriate for plant breeding purposes. All were resistant to glufosinate-ammonium–based herbicides. Detailed genomic characterization has verified transgene integration, and progeny analysis showed Mendelian inheritance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cooke, D.A. and Scott, R.K. 1993. The sugar beet crop. Chapman and Hall, London, UK.

    Book  Google Scholar 

  2. Winner, C. 1993. History of the crop, pp. 1–36 in The sugar beet crop. Cooke, D.A. and Scott, R.K. (eds.). Chapman and Hall, London, UK.

    Google Scholar 

  3. Steen, P. and Pedersen, H-C. 1993. Gene transfer for herbicide resistance. J. Sugar Beet Res. 30: 267–274.

    Article  Google Scholar 

  4. D'Halluin, K., Bossut, M., Bonne, E., Mazur, B., Leemans, J. and Botterman, J. 1992. Transformations of sugarbeet (Beta vulgaris L.) and evaluation of herbicide resistance in transgenic plants. Bio/Technology 10: 309–314.

    CAS  Google Scholar 

  5. Krens, F.A., Trifonova, A., Keizer, L.C.R. and Hall, R.D. 1996. The effect of exogenously-applied phytohormones on gene transfer efficiency in sugarbeet (Bete vulgaris L.). Plant Sci. In press.

  6. Krens, F.A., Zijlstra, C. Van der Molen, W., Jamar, D., and Huizing, H.J. 1988. Transformation and regeneration in sugar beet induced by ‘shooter’ mutants of Agrobacterium tumefaciens. Euphytica 185–194.

  7. Paul, H., Zijlstra, C., Leeuwaugh, J.E., Krens, F.A. and Huizing, H.J. 1987. Reproduction of the beet cyst nematode Heterodera schachtii on transformed root cultures of Beta vulgaris L. Plant Cell Rep. 6: 379–381.

    Article  CAS  Google Scholar 

  8. Lindsey, K. and Jones, M.G.K. 1989. Stable transformation of sugarbeet protoplasts by electroporation. Plant Cell Rep. 8: 71–74.

    Article  CAS  Google Scholar 

  9. Sangwan, R.S., Bourgeois, Y., Brown, S., Vasseur, G. and Sangwan-Norreel, B. 1992. Characterisation of competent cells and early events of Agrobacterium-mediated genetic transformation in Arabidopsis thaliana . Planta 188: 439–456.

    Article  CAS  Google Scholar 

  10. Draper, J., Scott, R. and Hamil, J. 1988. Transformation of dicotyledonous plant cells using the Ti plasmid of Agrobacterium tumefaciens and the Ri plasmid of Agrobacterium rhizogenes, pp. 69–160 in Plant genetic transformation and gene expression: a laboratory manual. Draper, J., Scott, R., Armitage, P., and Walden, R. (eds.). Blackwell, Oxford, UK.

    Google Scholar 

  11. Fry, J.E., Barnason, A.R. and Hinchee, M. 1991. Genotype-independent transformation of sugarbeet using Agrobacterium tumefaciens, in Molecular biology and plant development, Third International Congress of the ISPMB, Tucson, USA. Abstract No. 384.

    Google Scholar 

  12. Sander, U. 1994. Zur Transformation von Beta vulgaris L. PhD Thesis, University of Hannover, Germany.

  13. Kuspa, A. and Loomis, W.F. 1992. Tagging developmental genes in Dictostelium by restriction enzyme-mediated integration of plasmid DNA. Proc. Natl. Acad. Sci. 89: 8803–8807.

    Article  CAS  Google Scholar 

  14. Hall, R.D., Verhoeven, H.A. and Krens, F.A. 1995. Computer-assisted identification of protoplasts responsible for rare division events reveals guard cell totipotency. Plant Physiol. 107: 1379–1386.

    Article  CAS  Google Scholar 

  15. Hall, R.D., Pedersen, C. and Krens, F.A. 1993. Improvement of protoplast culture protocols for Beta vulgaris L. (sugar beet). Plant Cell Rep. 12: 339–342.

    Article  CAS  Google Scholar 

  16. Krens, F.A., Jamar, D., Rouwendal, G.J.A. and Hall, R.D. 1990. Transfer of cytoplasm from new Beta CMS sources to sugar beet by asymmetric fusion. Theor. Appl. Genet. 79: 390–396.

    Article  CAS  Google Scholar 

  17. Lenzner, S., Zoglauer, K. and Schieder, O. 1995. Plant regeneration from protoplasts of sugar beet (Bete vulgaris). Physiol. Plant. 94: 342–350.

    Article  Google Scholar 

  18. Benediktsson, I., Spampinato, C. and Schieder, O. 1995. Studies of the mechanism of transgene integration into plant protoplasts: improvement of the transformation rate. Euphytica 85: 53–61.

    Article  CAS  Google Scholar 

  19. Hall, R.D., Riksen-Bruinsma, T., Weyens, G.J., Lefebvre, M., Dunwell, J.M., van Tunen, A., et al. 1996. Sugar beet guard cell protoplasts demonstrate a remarkable capacity for cell division enabling applications in stomatal physiology and molecular breeding. J. Exper. Bot. In press.

  20. De Block, M., De Sonville, A. and Debrouwer, D. 1996. The selection mechanism of phosphinothricin is influenced by the metabolic status of the tissue. Planta 197: 619–626.

    Article  Google Scholar 

  21. Sack, F.D. 1987. Development and structure of stomata, pp. 59–89 in Stomatal function. Zeiger, E., Farquhar, G.D., and Cowan, I.R. (eds.). Stanford Univ. Press, Palo Alto, CA.

    Google Scholar 

  22. Melaragno, J.E., Mehrotra, B. and Coleman, A.W. 1993. Relationship between endopolyploidy and cell size in epidermal tissue of Arabidopsis . Plant Cell 5: 1661–1668.

    Article  Google Scholar 

  23. Pospisilova, J. and Santrucek, J. 1994. Stomatal patchiness. Biol. Plant. 36: 481–510.

    Article  Google Scholar 

  24. Mansfield, T.A., Hetherington, A.M. and Atkinson, C.J. 1990. Some current aspects of stomatal physiology. Annu. Rev. Plant Physiol. 41: 55–75.

    Article  CAS  Google Scholar 

  25. Krens, F.A., Molendijk, L., Wullems, G.J. and Schilperoort, R.A. 1982. In vitro transformation of plant protoplasts with Ti-plasmid DNA. Nature 296: 72–74.

    Article  CAS  Google Scholar 

  26. Struhl, K., Cameron, J.R. and Davis, R.W. 1976. Functional genetic expression of eukaryotic DNA in Escherichia coli . Proc. Natl. Acad. Sci. USA 73: 1471–1475.

    Article  CAS  Google Scholar 

  27. De Greef, W. and Jacobs, M. 1979. In vitro culture of sugar beet: description of a cell line with a high regeneration capacity. Plant Sci. Lett. 17: 55–61.

    Article  CAS  Google Scholar 

  28. Creemers-Molenaar, J., Loeffen, M., van Rossum, M., and Colijn-Hooymans, C.M. 1992. The effect of cold storage and ploidy level on the morphogenic response of perennial ryegrass (Lolium perenne) suspension cultures. Plant Sci. 83: 87–94.

    Article  Google Scholar 

  29. Kramer, C., DiMaio, J., Carswel, G.K. and Shillito, R.D. 1993. Selection of transformed protoplast-derived Zea mays colonies with phosphinothricin and a novel assay using the pH indicator chlorophenol red. Planta 190: 454–458.

    Article  CAS  Google Scholar 

  30. Alexander, M.P. 1969. Differential staining of aborted and non-aborted pollen. Stain Technol. 44: 117–122.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, R., Riksen-Bruinsma, T., Weyens, G. et al. A high efficiency technique for the generation of transgenic sugar beets from stomatal guard cells. Nat Biotechnol 14, 1133–1138 (1996). https://doi.org/10.1038/nbt0996-1133

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0996-1133

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing