Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

A method to codetect introduced genes and their products in gene therapy protocols

Abstract

To monitor the presence of introduced genes and the distribution of the encoded proteins in host tissues after gene transfer, we combined fluorescence in situ hybridization (FISH) and immunohistochemistry in two separate gene therapy paradigms. In brain tissue sections from animals injected with pHSVIac vector, we localized nuclei containing vector DMA both in cells expressing and not expressing ß-galactosidase (ß-gal). This suggests that the efficiency of gene transfer is affected not only by gene delivery, but also by cellular controls on gene expression. In a second paradigm, following myoblast transplantation, we detected donor nuclei in the muscle of a patient with Duchenne's muscular dystrophy. The donor nuclei were either surrounded by host nuclei or apparently fused in the patient's muscle fiber producing dystrophin. The combined FISH and immunohistochemistry assay offers greater sensitivity and more information than currently used polymerase chain reaction and protein detection methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Collins, F.S. 1995. Positional cloning moves from perditional to traditional. Nat Genet. 9: 347–350.

    Article  CAS  Google Scholar 

  2. Grossman, M., et al. 1994. Successful ex vivo gene therapy directed to liver in a patient with familial hypercholesterolaemia. Nat. Genet. 6: 325–326.

    Article  Google Scholar 

  3. DeMatteo, R.P., et al. 1995. Gene transfer to the thymus. A means of abrogating the immune response to recombinant adenovirus. Ann. Surg. 222: 229–239.

    Article  CAS  Google Scholar 

  4. Bordignon, C., et al. 1995. Gene therapy in peripheral blood lymphocytes and bone marrow for ADA− immunodeficient patients. Science 270: 470–475.

    Article  CAS  Google Scholar 

  5. Blaese, M.R., et al. 1995. T Lymphocyte-directed gene therapy for ADA− SCID: initial trial results after 4 years. Science 270: 475–480.

    Article  CAS  Google Scholar 

  6. Knowles, M.R., et al. 1995. A controlled study of adenoviral-vector-mediated gene transfer in the nasal epithelium of patients with cystic fibrosis. N. Engl. J. Med. 333: 823–831.

    Article  CAS  Google Scholar 

  7. Freed, C., et al. 1992. Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson's disease. N. Engl. J. Med. 327: 1549–1555.

    Article  CAS  Google Scholar 

  8. Widner, H., et al. 1992. Bilateral fetal mesencephalic grafting in two patients with parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). N. Engl. J. Med. 327: 1556–1563.

    Article  CAS  Google Scholar 

  9. Kordower, J., et al. 1995. Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson's disease. N. Engl. J. Med. 332: 1118–1124.

    Article  CAS  Google Scholar 

  10. Gussoni, E., et al. 1992. Normal dystrophin transcripts detected in Duchenne muscular dystrophy patients after myoblast transplantation. Nature 356: 435–438.

    Article  CAS  Google Scholar 

  11. Huard, J., et al. 1992. Human myoblast transplantation: preliminary results of 4 cases. Muscle & Nerve 15: 550–560.

    Article  CAS  Google Scholar 

  12. Karpati, G., et al. 1993. Myoblast transfer in Duchenne Muscular Dystrophy. Ann. Neurol. 34: 8–17.

    Article  CAS  Google Scholar 

  13. Mendell, J.R., et al. 1995. Myoblast transfer in the treatment of Duchenne's muscular dystrophy. N. Engl. J. Med. 333: 832–838.

    Article  CAS  Google Scholar 

  14. Crystal, R.G. 1995. Transfer of genes to humans: early lessons and obstacles to success. Science 270: 404–410.

    Article  CAS  Google Scholar 

  15. Blau, H.M. and Springer, M.L. 1995. Gene therapy—a novel form of drug delivery. N. Engl. J. Med. 333: 1204–1207.

    Article  CAS  Google Scholar 

  16. Blau, H.M. and Springer, M.L. 1995. Muscle-mediated gene therapy. N. Engl. J. Med. 333: 1554–1556.

    Article  CAS  Google Scholar 

  17. Leiden, J.M. 1995. Gene therapy—promise, pitfalls and prognosis. N. Engl. J. Med. 333: 871–873.

    Article  CAS  Google Scholar 

  18. Wolff, J.A., et al. 1990. Direct gene transfer into muscle in vivo. Science 247: 1465–1468.

    Article  CAS  Google Scholar 

  19. Dhawan, J., et al. 1991. Systemic delivery of human growth hormone by injection of genetically enginereed myoblasts. Science 254: 1509–1512.

    Article  CAS  Google Scholar 

  20. Lynch, C.M., Clowes, M.M., Osborne, W.R.A., Clowes, A.W. and Miller, D.A. 1992. Long-term expression of human adenosine deaminase in vascular smooth muscle cells of rats: a model for gene therapy. Proc. Natl. Acad. Sci. USA 89: 1138–1142.

    Article  CAS  Google Scholar 

  21. Stratford-Perricaudet, L.D., Makeh, I., Perricaudet, M. and Briand, P. 1992. Widespread long-term gene transfer to mouse skeletal muscles and heart. J. Clin. Invest. 90: 626–630.

    Article  CAS  Google Scholar 

  22. Acsadi, G., et al. 1994. A differential efficiency of adenovirus-mediated in vivo gene transfer into skeletal muscle cells of different maturity. Hum. Molec. Genet. 3: 579–584.

    Article  CAS  Google Scholar 

  23. Lichter, P., et al. 1988. Rapid detection of human chromosome 21 aberrations by in situ hybridization. Proc. Natl. Acad. Sci. USA 85: 9664–9668.

    Article  CAS  Google Scholar 

  24. Lichter, P., et al. 1989. High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science 247: 64–69.

    Article  Google Scholar 

  25. Trask, B.J. 1991. Fluorescence in situ hybridization: applications in cytogenetics and gene mapping. Trends Genet. 7: 149–154.

    Article  CAS  Google Scholar 

  26. Buckle, V.J. and Kearney, L. 1994. New methods in cytogenetics. Curr. Op. Genet. & Develop. 4: 374–382.

    Article  CAS  Google Scholar 

  27. Speel, E.J., Herbergs, J., Ramaekers, F.C. and Hopman, A.M. 1994. Combined immunocytochemistry and fluorescence in situ hybridization for simultaneous tricolor detection of cell cycle, genomic, and phenotypic parameters of tumor cells. J. Histochem. Cytochem. 42: 961–966.

    Article  CAS  Google Scholar 

  28. Strehl, S. and Ambros, P.F. 1993. Fluorescence in situ hybridization combined with immunohistochemistry for highly sensitive detection of chromosome 1 aberrations in neuroblastoma. Cytogenet. Cell Genet. 63: 24–28.

    Article  CAS  Google Scholar 

  29. Han, K.H., Hollinger, F.B., Noonan, C.A. and Yoffe, B. 1992. Simultaneous detection of HBV-specific antigens and DNA in paraffin-embedded liver tissue by immunohistochemistry and in situ hybridization using a digoxigenin-labeled probe. J. Virol. Meth. 37: 89–97.

    Article  CAS  Google Scholar 

  30. Lu, Q.L. and Dover, R. 1993. Computer assisted signal co-localization for simultaneous detection of antigen by immunohistochemistry and DNA by non-isotopic in situ hybridization. Histochemistry 99: 23–27.

    Article  CAS  Google Scholar 

  31. Tajabakhsh, S. and Houzelstein, D. 1995. In situ hybridization and ß-galactosidase: a powerful combination for analysing transgenic mice. Trends Genet. 11: 42.

    Article  Google Scholar 

  32. Couwenhoven, R.I., Luo, W. and Snead, M.L. 1990. Co-localization of EGF transcripts and peptides by combined immunohistochemistry and in situ hybridization. J. Histochem. Cytochem. 38: 1853–1857.

    Article  CAS  Google Scholar 

  33. Heppelmann, B., Senaris, R. and Emson, P.C. 1994. Combination of alkaline phosphatase in situ hybridization with immunohistochemistry: colocalization of calretinin-mRNA with calbindin and tyrosine hydroxylase immunoreactivity in rat substantia nigra neurons. Brain Res. 636: 293–299.

    Article  Google Scholar 

  34. Larsen, P.J. and Mikkelsen, J.D. 1994. Simultaneous detection of neuropeptides and messanger RNA in the magnocellular hypothalamo-neurohypophysial system by a combination of non-radioactive in situ hybridization histochemistry and immunohistochemistry. Histochemistry 102: 415–423.

    Article  CAS  Google Scholar 

  35. Geller, A.I. and Breakefield, X.O. 1988. A defective HSV-1 vector expresses Escherichia coli beta-galactosidase in cultured peripheral neurons. Science 241: 1667–1669.

    Article  CAS  Google Scholar 

  36. Geller, A.I. and Freese, A. 1990. Infection of cultured central nervous system neurons with a defective herpes simplex virus 1 vector results in stable expression of Escherichia coli ß-galactosidase. Proc. Natl. Acad. Sci. USA 87: 1149–1153.

    Article  CAS  Google Scholar 

  37. Geller, A.I., Keyomarsi, K., Bryan, J. and Pardee, A.B. 1990. An efficient deletion mutant packaging system for defective herpes simplex virus vectors: potential applications to human gene therapy and neuronal physiology. Proc. Natl. Acad. Sci. USA 87: 8950–8954.

    Article  CAS  Google Scholar 

  38. Landon, D.N. 1982. Skeletal muscle-normal morphology, development and innervation, pp. 1–87 in Skeletal muscle pathology, Vol 1. Mastaglia, F.L. and Walton, S.J. (eds.). Churchill Livingstone, London.

    Google Scholar 

  39. Zagon, I.S. and McLaughin, J. 1979. Morphological identification and biochemical characterization of isolated brain cell nuclei from the developing rat cerebellum. Brain Res. 170: 443–457.

    Article  CAS  Google Scholar 

  40. Smialowska, M., Bal-Klara, A. and Smialowski, A. 1988. Chronic imipramine diminishes the nuclear size of neurons in the locus coeruleus and cingular cortex but not in the hippocampus of the rat brain. Neurosci. 26: 803–807.

    Article  CAS  Google Scholar 

  41. Knuutila, S., et al. 1993. Analysis of phenotype and genotype of individual cells in neoplasms. Cancer Genet. Cytogenet. 68: 104–113.

    Article  CAS  Google Scholar 

  42. During, M.J., Naegele, J.R., O'Malley, K. and Geller, A.I. 1994. Long-term behavioral recovery in Parkinsonian rats by an HSV vector expressing tyrosine hydroxylase. Science 266: 1399–1402.

    Article  CAS  Google Scholar 

  43. Geller, A.I., During, M.J., Haycock, J.W., Freese, A. and Neve, R. 1993. Long-term increase in neurotransmitter release from neuronal cells expressing a constitutively active adenylate cyclase from a herpes simplex virus type 1 vector. Proc. Natl. Acad. Sci. USA 90: 7603–7607.

    Article  CAS  Google Scholar 

  44. Fraefel, C., et al. 1996. Helper virus-free transfer of HSV-1 plasmid vectors into neural cells. J. Virol. In press.

  45. Verma, R.S. and Babu, A. (ed). 1989. Human chromosomes—manual of basic techniques. Pergamon Press, New York.

    Google Scholar 

  46. Beggs, A.H., Koenig, M., Boyce, F.M. and Kunkel, L.M. 1990. Detection of 98% of DMD/BMD gene deletions by polymerase chain reaction. Hum. Genet. 86: 45–48.

    Article  CAS  Google Scholar 

  47. Lidov, H.G.W., Byers, T.J., Watkins, S.C. and Kunkel, L.M. 1990. Localization of dystrophin to postsynaptic regions of central nervous system cortical neurons. Nature 348: 725–728.

    Article  CAS  Google Scholar 

  48. Byers, T.J., Kunkel, L.M. and Watkins, S.C. 1991. The subcellular distribution of dystrophin in mouse skeletal, cardiac and smooth muscle. J. Cell Biol. 115: 411–421.

    Article  CAS  Google Scholar 

  49. Nishiyo, Y., et al. 1995. Identification and characterization of a gene regulating enzymatic glycosylation which is induced by diabetes and hyperglycemia specifically in rat cardiac tissue. J. Clin. Invest. 96: 1759–1767.

    Article  Google Scholar 

  50. Monaco, A.P., et al. 1986. Isolation of candidate cDNAs for portions of the Duchenne muscular dystrophy gene. Nature 323: 646–650.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gussoni, E., Wang, Y., Fraefel, C. et al. A method to codetect introduced genes and their products in gene therapy protocols. Nat Biotechnol 14, 1012–1016 (1996). https://doi.org/10.1038/nbt0896-1012

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0896-1012

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing