Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Engineering of in vivo immune responses to DNA immunization via codelivery of costimulatory molecule genes

Abstract

Nucleic acid immunization is a novel vaccination technique to induce antigen-specific immune responses. We have developed expression cassettes for cell surface markers CD80 and CD86, two functionally related costimulatory molecules that play an important role in the induction of T cell-mediated immune responses. Coimmunization of these expression plasmids, along with plasmid DNA encoding for HIV-1 antigens, did not result in any significant change in the humoral response; however, we observed a dramatic increase in cytotoxic T-lymphocyte (CTL) induction as well as T-helper cell proliferation after the coadministration of CD86 genes, in contrast, coimmunization with a CD80 expression cassette resulted in a minor, but positive increase in T-helper cell or CTL responses. This strategy may be of value for the generation of rationally designed vaccines and immune therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kim, J.J., Ayyvoo, V., Bagarazzi, M.L., Chattergoon, M.A., Dang, K., Wang, B. et al. 1997 In vivo engineering of a cellular immune response by coadministration of IL-12 expression vector with a DMA immunogen. J. Immunol. 158: 816–826.

    CAS  PubMed  Google Scholar 

  2. Boyer, J.D., Wang, B., Ugen, K., Agadjanyan, M.G., Javadian, MA, Frost, R. et al. 1996 Protective anti-HIV immune responses in non-human primates through DMA immunization. J. Med. Primatol. 25: 242–250.

    Article  CAS  Google Scholar 

  3. Wang, B., Ugen, K.E., Srikantan, V., Agadjanyan, M.G., Dang, K., Refaefi, Y. et al. 1993 Gene inoculation generates immune responses against human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. USA 90: 4156–4160.

    Article  CAS  Google Scholar 

  4. Wang, B., Boyer, J.D., Ugen, K.E., Srikantan, V., Ayyavoo, V., Agadjanyan, M.G. et al. 1995 Nucleic acid-based immunization against HIV-1: induction of protective in vivo immune responses. AIDS 9: S159–170.

    Article  Google Scholar 

  5. Tang, D., DeVrt, M. and Johnston, S. 1992 Genetic immunization is a simple method for elicting an immune response. Nature 356: 152–154.

    Article  CAS  Google Scholar 

  6. Utmer, J., Donneily, J., Parker, S.E., Rhodes, G.H., Feigner, P.L., Dwarki, V.L. et al. 1993 Heterologous protection against influenza by injection of DMA encoding a viral protein. Science 259: 1745–1749.

    Article  Google Scholar 

  7. Davis, H., Michel, M.L. and Whalen, R.G. 1993 DMA-based immunization induces continuous secretion of hepatitis B surface antigen and high levels of circulating antibody. Human Mol. Genetics 2: 1857–1851.

    Article  Google Scholar 

  8. Fynan, E., Webster, R., Fuller, D., Haynes, J., Santoro, J. and Robinson, H. 1993 DMA vaccines: Protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proc. Nati. Acad. Sci. USA 90: 11478–11482.

    Article  CAS  Google Scholar 

  9. Margolis, H.S. 1993 Prevention of acute and chronic liver disease through immunization: hepatitis Band beyond. J.lnf.Dis. 168: 9–14.

    Article  CAS  Google Scholar 

  10. Zarozinski, C.C., Fynan, E.F., Selin, L.K., Robinson, H.L. and Welsh, R.M. 1995 Protective CTL-dependent immunity and enhanced immunopathology in mice immunized by particle bombardment with DMA encoding an internal virion protein. J. Immunol. 154: 4010–4017.

    CAS  PubMed  Google Scholar 

  11. Doe, B., Selby, M., Barnett, S., Baenzinger, J. and Walker, C.M. 1996 Induction of cytotoxic T-lymphocytes by intramuscular immunization with plasmid DMA is facilitated by bone marrow-derived cells. Proc. Natl. Acad. Sci. USA 93: 8578–8583.

    Article  CAS  Google Scholar 

  12. Corr, M., Lee, D.J., Carson, D.A. and Tighe, H. 1996 Gene vaccination with naked plasmid DNA: mechanism of CTL priming. J. Exp. Med. 184: 1555–1560.

    Article  CAS  Google Scholar 

  13. Pardoll, D.M. and Beckerteg, A.M. 1995 Exposing the immunology of naked DNA vaccines. Immunity 3: 165–169.

    Article  CAS  Google Scholar 

  14. Brodsky, F.M. and Guagliardi, L.E. 1991 The cell biology of antigen processing and presentation. Ann. Rev. Immunol. 9: 707–744.

    Article  CAS  Google Scholar 

  15. Wolff, J.A., Malone, R.W., Williams, R., Chong, W., Acsadi, G., Jani, A. and Feigner, P.L. 1990 Direct gene transfer into mouse muscle in vivo. Science 247: 1465–1468.

    Article  CAS  Google Scholar 

  16. Beauchamp, J.R., Abraham, D.J., Bou-Gharios, G., Partridge, T.A. and Olsen, I. 1992 Expression and function of heterotypic adhesion molecules during differentiation of human skeletal muscle in culture. Am. J. Pathol. 140: 387–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Blau, H.M. and Webster, C. 1981 Isolation and characterization of human muscle cells. Proc. Nati. Acad. Sci. USA 78: 5623–5627.

    Article  CAS  Google Scholar 

  18. Goebels, N., Michaelis, D., Wekerte, M. and Hohlfeld, R. 1992 Human myoblasts as antigen-presenting cells. J. Immunol. 148: 661–667.

    Google Scholar 

  19. Hohlfeld, R. and Engel, A.G. 1990 Induction of HLA-DR expression on human myoblasts with interferon-gamma. Am. J. Pathol. 136: 503–508.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hohlfeld, R. and Engel, A.G. 1994 The immunobiology of muscle. Immunol. Today 15: 269–274.

    Article  CAS  Google Scholar 

  21. Michaelis, D., Goebels, N. and Hohlfeld, R. 1993 Constitutive abd cytokine-induced expression of human leukocyte antigens and cell adhesion molecules by human myotubes. Am. J. Pathol. 143: 1142–1149.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Mantegazza, R., Hughes, S.M. Mitchell, D., Travis, M., Blau, H.M. and Steinman, L. 1991 Modulation of MHC class II antigen expression in human myoblasts after treatment with IFN-y. Neurol. 41: 1128–1132.

    Article  CAS  Google Scholar 

  23. Roy, R., Dansereau, G. Tremblay, J.R., Belles-Isles, M., Huard, J., Labrecque, C. and Bouchard, J.R. 1991 Expression of major histocompatibility complex antigens on human myoblasts. Trans. Proceed. 23: 799–801.

    CAS  Google Scholar 

  24. June, C., Bluestone, J.A., Nadler, L.M. and Thompson, C.B. 1994 The B7 and CD28 receptor families. Immunol. Today 15: 321–333.

    Article  CAS  Google Scholar 

  25. Lanier, L.L., O'Falton, S., Somoza, C., Phillips, J.H., Linsley, P.S., Okumura, K. et al. 1995 CD80 (B7) and CD86 (B70) provide similar costimulatory signals for T-cell proliferation, cytokine production, and generation of CTL. J. Immunol. 154: 97–105.

    CAS  PubMed  Google Scholar 

  26. Linsley, P.S., Clark, E.A. and Ledbetter, J.A. 1990 The T-cell antigen, CD28, mediates adhesion with B cells by interacting with activation antigen, B7/BB-1. Proc. Natl. Acad. Sci. USA 87: 5031–5035.

    Article  CAS  Google Scholar 

  27. Yang, Y., Su, Q., Grewal, I.S. Schilz, R., Flavell, R.A. and Wilson, J.M. 1996 Transient subversion of CD40 ligand function diminishes immune responses to adenovirus vectors in mouse liver and lung tissues. J. Virol. 70: 6370–6377.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Takahashi, H., Nakagawa, Y., Pendleton, C.D., Houghten, R.A., Yokomuro, K., Germain, R.N. and Berzofsky, J.A. 1992 Induction of broadly cross-reactive cytotoxic T cells recognizing an HIV-1 envelope determinant. Science 255: 333–336.

    Article  CAS  Google Scholar 

  29. Shirai, M., Pendleton, C.D. and Berzofsky, J.A. 1992 Broad recognition of cytotoxic T-cell epitopes from the HIV-1 envelope protein with multiple class I histocompatibility molecules. J. Immunol. 148: 1657–1667.

    CAS  PubMed  Google Scholar 

  30. Wang, B., Merva, M., Dang, K., Ugen, K.E., Boyer, J.D., Williams, W.V. and Weiner, D.B. 1994 DNA inoculation induces protective in vivo immune responses against cellular challenge with HIV-1 antigen-expressing cells. AIDS Res. and Hum. Retro. 10: S35–41.

    Article  CAS  Google Scholar 

  31. Kundig, T.M., Bachmann, M.F., DiPaolo, C., Simard, J.J.L., Battegay, M., Lother, H. et al. 1995 Fibroblasts as efficient antigen-presenting cells in lymphoid organs. Science 268: 1343–1347.

    Article  CAS  Google Scholar 

  32. Conry, R.M., Widera, G., LoBuglio, A.F., Fuller, J.T., Moore, S.E., Barlow, D.L. et al. 1996 Selected strategies to augment polynucleotide immunization. Gene Therapy 3: 67–74.

    CAS  PubMed  Google Scholar 

  33. Wu, T.-C., Huang, A.Y.C., Jaffee, E.M., Levitsky, H.I. and Pardoll, D.M. 1995 A reassessment of the role of B7-1 expression in turner rejection. J. Ex. Med. 182: 1415–1421.

    Article  CAS  Google Scholar 

  34. Huang, A.Y.C., Bruce, A.T., Pardoll, D.M. and Levitsky, H.I. 1996 Does B7-1 expression confer antigen-presenting cell capacity to tumors in vivo? J. Ex. Med. 183: 769–776.

    Article  CAS  Google Scholar 

  35. Huang, A.Y.C., Golumbek, R., Ahmadzadeh, M., Jaffee, E., Pardoll, D.M. and Levitsky, H.I. 1994 Role of bone marrow-derived cells in presenting MHC class l-restricted tumor antigens. Science 264: 961–965.

    Article  CAS  Google Scholar 

  36. Kuchroo, V.K., Das, M.R., Brown, J.A., Ranger, A.M., Zamvil, S.S., Sobel, R A et al. 1995 B7-1 and B7-2 costimulatory molecules activate differentially the Th1/Th2 developmental pathways: application to sutoimrnune disease therapy. Cell 80: 707–718.

    Article  CAS  Google Scholar 

  37. Azuma, M., Ito, D., Yagita, H., Okumura, K., Phillips, J.H., Lanier, L.L. and Somoza, C. 1993 B70 antigen is a second ligand for CTLA-4 and CD28. Nature 366: 76–79.

    Article  CAS  Google Scholar 

  38. Freedman, A.S., Freeman, G.J., Rhynhart, K. and Nadler, L.M. 1991 Selective induction of B7/BB-1 on interferon-g-stimulated monocytes: a potential mechanism for amplification of T-cell activation through the CD28 pathway. Cell. Immunol. 137: 429–437.

    Article  CAS  Google Scholar 

  39. Larsen, C.R., Ritchie, S.C., Hendrix, R., Linsley, P.S., Hathcock, K.S., Hodes, R.J. et al. 1994 Regulation of immunostimulatory function and costimulatory molecule (B7-1 and B7-2) expression on murine dedritic cells. J. Immunol. 152: 5208–5219.

    CAS  Google Scholar 

  40. Stack, R.M., Lenschow, D.J., Gray, G.S., Bluestone, J.A. and Fitch, F.W. 1994 IL-4 treatment of small splenic B cells induces costimulatory molecules B7-1 and B7-2. J. Immunol. 152: 5723–5733.

    CAS  PubMed  Google Scholar 

  41. Linsley, P.S.W.B., Grosmaire, L.S., Aruffo, A., Damle, N.K. and Ledbetter, J.A. 1991 Binding of the B cell activation antigen B7 to CD28 costimulates T-cell proliferation and interieukin-2 mRNA accumulation. J. Exp. Med. 173: 721–730.

    Article  CAS  Google Scholar 

  42. Azuma, M., Cayabyab, M., Buck, D., Phillips, J.H. and Lanier, L.L. 1992 CD28 interaction with B7 costimulates primary aJlogeneic proliferative responses and cytotoxicity mediated by small, resting T-lymphocytes. J. Exp. Med. 175: 353–360.

    Article  CAS  Google Scholar 

  43. Levy, D.N., Fernandes, L.S., Williams, W.V. and Weiner, D.B. 1993 Induction of cell differentiation by human immunodeficiency virus 1 vpr. Cell 72: 541–550.

    Article  CAS  Google Scholar 

  44. Agadjanyan, M.A. and Sidorova, E.V. 1991 Rote of antigen-binding B-lymphocytes in the formation of antigen-dependent. Biomed Science 2: 361–366.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Weiner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirn, J., Bagarazzi, M., Trivedi, N. et al. Engineering of in vivo immune responses to DNA immunization via codelivery of costimulatory molecule genes. Nat Biotechnol 15, 641–646 (1997). https://doi.org/10.1038/nbt0797-641

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0797-641

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing