Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Cloning of ligand targets: Systematic isolation of SH3 domain-containing proteins

Abstract

Based on the prevalence of modular protein domains, such as Src homology domain 3 and 2 (SH3 and SH2), among important signaling molecules, we have sought to identify new SH3 domain-containing proteins. However, modest sequence similarity among these domains restricts the use of DNA-based methods for this purpose. To circumvent this limitation, we have developed a functional screen that permits the rapid cloning of modular domains based on their ligand-binding activity. Using operationally defined SH3 ligands from combinatorial peptide libraries, we screened a series of mouse and human cDNA expression libraries. We found that 69 of the 74 clones isolated encode at least one SH3 domain. These clones encode 18 different SH3-containing proteins, 10 of which have not been described previously. The isolation of entire repertoires of modular domain-containing proteins will prove invaluable in genome analysis and in bringing new targets into drug discovery programs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cohen, G.B., Ren, R. and Baltimore, D. 1995. Modular binding domains in signal transduction proteins. Cell 80: 237–248.

    Article  CAS  Google Scholar 

  2. Pawson, T. 1995. Protein module and signalling networks. Nature 373: 573–560.

    Article  CAS  Google Scholar 

  3. Cicchetti, P., Mayer, B.J., Thiel, G. and Baltimore, D. 1992. Identification of a protein that binds to the SH3 region of Abl and is similar to Bcr and GAP-rho. Science 257: 803–806.

    Article  CAS  Google Scholar 

  4. Ren, R., Mayer, B., Cicchetti, P. and Baltimore, D. 1993. Identification of a ten-amino acid proline-rich SH3 binding site. Science 259: 1157–1161.

    Article  CAS  Google Scholar 

  5. Chen, J.K., Lane, W.S., Brauer, A.W., Tanaka, A. and Schreiber, S.L. 1993. Biased combinatorial libraries: novel ligands for the SH3 domain of phosphatidylinositol 3-kinase. J. Am. Chem. 115: 12591–12592.

    Article  CAS  Google Scholar 

  6. Cheadle, C. et al. 1994. Identification of a Src SH3 domain binding motif by screening a random phage display library. J. Biol. Chem. 269: 24034–24039.

    CAS  PubMed  Google Scholar 

  7. Rickles, R.J. et al. 1994. Identification of Src, Fyn, Lyn, PI3K, and Abl SH3 domain ligands using phage display libraries. EMBO J. 13: 5598–5604.

    Article  CAS  Google Scholar 

  8. Sparks, A.B., Quilliam, L.A., Thorn, J.M., Der, C.J. and Kay, B.K. 1994. Identification and characterization of Src SH3 ligands from phage-displayed random peptide libraries. J. Biol. Chem. 269: 23853–23856.

    CAS  PubMed  Google Scholar 

  9. Yu, H., Chen, J.K., Feng, S., Dalgarno, D.C., Brauer, A.W. and Schreiber, S.L. 1994. Structural basis for the binding of proline-rich peptides to SH3 domains. Cell 76: 933–945.

    Article  CAS  Google Scholar 

  10. Sparks, A., Rider, J., Hoffman, N., Fowlkes, D., Quilliam, L. and Kay, B. 1996. Distinct ligand preferences of SH3 domains from Src, Yes, Abl, cortactin, p53BP2, PLCγ, Crk, and Grb2. Proc. Natl. Acad. Sci. USA 93: 1540–1544.

    Article  CAS  Google Scholar 

  11. Skolnik, E. et al. 1991. Cloning of PI3 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases. Cell 65: 83–90.

    Article  CAS  Google Scholar 

  12. Feng, S., Chen, J., Yu, H., Simmon, J. and Schreiber, S. 1994. Two binding orientations for peptides to the Src SH3 domain: development of a general model for SH3-ligand interactions. Science 266: 1241–1247.

    Article  CAS  Google Scholar 

  13. Lim, W.A., Richards, F.M. and Fox, R. 1994. Structural determinants of peptide-binding orientation and of sequence specificity in SH3 domains. Nature 372: 375–379.

    Article  CAS  Google Scholar 

  14. Iwabuchi, K., Bartel, P.L., Li, B., Marraccino, R. and Fields, S. 1994. Two cellular proteins that bind to wild-type but not mutant p53. Proc. Natl. Acad. Sci. USA 91: 6098–6102.

    Article  CAS  Google Scholar 

  15. Tomasetto, C. et al. 1995. Identification of four novel human genes amplified and overexpressed in breast carcinoma and located to the q11 -q21.3 region of chromosome 17. Genomics 28: 367–376.

    Article  CAS  Google Scholar 

  16. Wu, H. and Parsons, J.T. 1993. Cortactin, an 80/85-kilodalton pp60src substrate, is a filamentous actin-binding protein enriched in the cell cortex. J. Cell Biol. 120: 1417–1426.

    Article  CAS  Google Scholar 

  17. Ishikawa, R. et al. 1994. Drebrin, a development-associated brain protein from rat embryo, causes the dissociation of tropomyosin from actin filaments. J. Biol. Chem. 269: 29928–29933.

    CAS  PubMed  Google Scholar 

  18. David, C., Solimena, M. and DeCamilli, P. 1994. Autoimmunity in stiff-Man syndrome with breast cancer is targeted to the C-terminal region of human amphiphysin, a protein similar to the yeast proteins, Rvs167 and Rvs161. FEBS Lett. 351: 73–79.

    Article  CAS  Google Scholar 

  19. Fukamachi, H. et al. 1994. Identification of a protein, SPY75, with repetitive helix-turn-helix motifs and an SH3 domain as a major substrate for protein tyrosine kinase(s) activated by Fc epsilon RI cross-linking. J. Immunol. 152: 642–652.

    CAS  PubMed  Google Scholar 

  20. Knudsen, B.S., Feller, S.M. and Hanafusa, H. 1994. Four proline-rich sequences of the guanine-nucleotide exchange factor C3G bind with unique specificity to the first Src homology 3 domain of Crk. J. Biol. Chem. 269: 32781–32787.

    CAS  PubMed  Google Scholar 

  21. Vagen-Descroiz, M. et al. 1991. Isolation and characterisation of porcine sorbin. Eur. J. Biochem. 201: 53–60.

    Article  Google Scholar 

  22. Margolis, B., Skolnik, E.Y. and Schlessinger, J. 1995. Use of tyrosine-phosphorylated proteins to screen bacterial expression libraries of SH2 domains. Meth. Enzymol. 255: 360–369.

    Article  CAS  Google Scholar 

  23. Kawakami, T., Kawakami, Y., Aaronson, S.A. and Robbins, K.C. 1988. Acquisition of transforming properties by FYN, a normal SRC-related human gene. Proc. Natl. Acad. Sci. USA 85: 3870–3874.

    Article  CAS  Google Scholar 

  24. Yamanashi, Y. et al. 1987. The yes-related cellular gene lyn encodes a possible tyrosine kinase similar to p56lck. Mol. Cell. Biol. 7: 237–243.

    Article  CAS  Google Scholar 

  25. Clark, S.G., Stern, M.J. and Horvitz, H.R. 1992. C. elegans cell-signalling gene sem-5 encodes a protein with SH2 and SH3 domains. Nature 356: 340–344.

    Article  CAS  Google Scholar 

  26. Songyang, Z. et al. 1993. SH2 domains recognize specific phosphopeptide sequences. Cell 72: 767–778.

    Article  CAS  Google Scholar 

  27. Songyang, Z., Margolis, B., Chaudhuri, M., Shoelson, S.E. and Cantley, L.C. 1995. The phosphotyrosine interaction domain of She recognizes tryosine-phosphorylated NPXY motif. J. Biol. Chem. 270: 14863–14866.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sparks, A., Hoffman, N., McConnell, S. et al. Cloning of ligand targets: Systematic isolation of SH3 domain-containing proteins. Nat Biotechnol 14, 741–744 (1996). https://doi.org/10.1038/nbt0696-741

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0696-741

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing