Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Bioprotection of microbial communities from toxic phenol mixtures by a genetically designed pseudomonad

Abstract

Pseudomonas sp. B13 SN45RE is a genetically engineered microorganism (GEM) that is able to simultaneously degrade mixtures of chloro- and methylaromatics ordinarily toxic for microbial communities via a designed novel ortho-cleavage pathway. The utility of the GEM was investigated in a laboratory scale Sewage plant fed with mixtures of either 4-chlorophenol and 4-methyphenol or 3-chlorophenol and 4-methylphenol. In the model system the GEM significantly increased the rate and extent of degradation of the phenol mixtures. In the absence of the GEM, shock loads of the phenol mixtures (1 mM of each compound) reduced the numbers of culturable bacteria by three orders of magnitude, completely eliminated protozoa and metazoa, and caused a drastic decrease in oxygen consumption, whereas the presence of the GEM protected the indigenous microbial community and assured continued functioning of the sewage plant.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Blasco, R., Wittich, R.-M., Mallavarapu, M., Timmis, K.N., and Pieper, D.H. 1995. From xenobkrtic to antibiotic, formation of protoanemonin from 4-chlorocatechol by enzymes of the 3-oxoadipate pathway. J. Biol. Chem. 270: 29229–29235.

    Article  CAS  Google Scholar 

  2. Timmis, K.N., Steffan, R.J., and Unterman, R. 1994. Designing microorganisms for the treatment of toxic wastes. Annu. Rev. Microbiol. 48: 525–657.

    Article  CAS  Google Scholar 

  3. van der Meer, J.R., de Vos, W.M., Harayama, S., and Zehnder, A.J.B. 1992. Molecular mechanism of genetic adaptation to xenobiotic compounds. Microbiol. Rev. 56: 677–694.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Reineke, W. and Knackmuss, H.-J. 1988. Microbial degradation of haloaromatics. Annu. Rev. Microbiol. 42: 263–287.

    Article  CAS  Google Scholar 

  5. Smith, M.R. 1990. The biodegradation of aromatic hydrocarbon by bacteria. Biodegradation 1: 191–206.

    Article  CAS  Google Scholar 

  6. Bartels, I., Knackmuss, H.-J., and Reineke, W. 1984. Suicide inactivation of catechol 2,3-dtoxygenase from Pseudomonas putida mt-2 by 3-halocatechols. Appl. Environ. Microbiol. 47: 500–605.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Reineke, W., Jeenes, D.J., Williams, P.A., and Knackmuss, H.-J. 1982. TOL plasmid pWW0 in constructed halobenzoate-degrading Pseudomonas strains: prevention of meta pathway. J. Bacteriol. 150: 195–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Rojo, F., Pieper, D.H., Engesser, K.-H., Knackmuss, H.-J., and Timmis, K.N. 1987. Assemblage of ortho cleavage route for simultaneous degradation of chloro- and methylaromatics. Science 238: 1395–1398.

    Article  CAS  Google Scholar 

  9. Heuer, H., Dwyer, D.F., Timmis, K.N., and Wagner-Döbler, I. 1995. Efficacy in aquatic microcosms of a genetically engineered pseudomonad applicable for bioremediation. Microb. Ecol. 29: 203–220.

    Article  CAS  Google Scholar 

  10. Nüβlein, K., Maris, D., Timmis, K., and Dwyer, D.F. 1992. Expression and transfer of engineered catabolic pathways harbored by Pseudomonas spp. introduced into activated sludge microcosms. Appl. Environ. Microbiol. 58: 3380–3386.

    Google Scholar 

  11. Pipke, R., Wagner-Döbler, I., Timmis, K.N., and Dwyer, D.F. 1992. Survival and function of a genetically engineered pseudomonad in aquatic sediment microcosms. Appl. Environ. Microbiol. 58: 1259–1265.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Krumme, M.L., Smith, R.L., Egestorff, J., Thiem, S.M., Tiedje, J.M., Timmis, K.N., and Dwyer, D.F. 1994. Behaviour of pollutant-degrading microorganisms in aquifers: predictions for genetically engineered organisms. Environ. Sci. Technol. 28: 1134–1138.

    Article  CAS  Google Scholar 

  13. Dom, E., Hellwig, M., Reineke, W. and Knackmuss, H.-J. 1974. Isolation and characterization of a 3-chlorobenzoate degrading pseudomonad. Arch. Microbiol. 99: 61–70.

    Article  Google Scholar 

  14. Wieser, M., Eberspächer, J., Vogler, B., and Lingens, F. 1994. Metabolism of 4-chlorocatechol by Azotobacter sp. GP1: structure of the meta cleavage product of 4-chtorocatechol. FEMS Microbiol. Lett. 116: 73–78.

    Article  CAS  Google Scholar 

  15. Knackmuss, H.-J. and Hellwig, M. 1978. Utilization and cooxidation of chlorinated phenols by Pseudomonas sp. B13. Arch. Microbiol. 117: 1–7.

    Article  CAS  Google Scholar 

  16. Peelen, S., Rietjens, I.M.C.M., van Berkel, W.J.H., van Workum, W.A.T., and Vervoort, J. 1993. 19F-NMR study on the pH-dependent regtoselectivity and rate of the ortho-hydroxy-lation of 3-fluoropbenol by phenol hydroxylase from Trichospomn cutaneum. Implications for the reaction mechanism. Eur. J. Biochem. 218: 345–353.

    Article  CAS  Google Scholar 

  17. Pieper, D.H., Stadler-Fritsche, K., Knackmuss, H.-J., and Timmis, K.N. 1995. Formation of dimethylmuconolactones from dimethylphenols by Alcaligenes eutrophus JMP134. Appl. Environ. Microbiol. 61: 2159–2165.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Güde, H. 1979. Grazing by protozoa as selection factor for activated sludge bacteria. Microb. Ecol. 5: 225–237.

    Article  Google Scholar 

  19. Sambrook, J., Fritsch, E.F., and Maniatis, T. 1989. Molecular cloning: a laboratory manual, 2nd ed., Odd Spring Harbor Laboratory, Cold Spring Harbor, NY.

  20. Wagner-Döbler, I., Pipke, R., Timmis, K.N., and Dwyer, D.F. 1992. Evaluation of aquatic sediment microcosms and their use in assessing possible effects of introduced microorganisms on ecosystem parameters. Appl. Environ. Microbiol. 58: 1249–1258.

    PubMed  PubMed Central  Google Scholar 

  21. Buchholz, K.D. and Pawliszin, J. 1993. Determination of phenols by solid-phase microextraction and gas chromatographic analysis. Environ. Sci. Technol. 27: 2844–2848.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erb, R., Eichner, C., Wagner-Döbler, I. et al. Bioprotection of microbial communities from toxic phenol mixtures by a genetically designed pseudomonad. Nat Biotechnol 15, 378–382 (1997). https://doi.org/10.1038/nbt0497-378

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0497-378

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing