Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Rational engineering of activity and specificity in a serine protease

Abstract

The discovery of the Na+-dependent allosteric regulation in serine proteases makes it possible to control catalytic activity and specificity in this class of enzymes in a way never considered before. We demonstrate that rational site-directed mutagenesis of residues controlling Na+ binding can profoundly alter the properties of a serine protease. By suppressing Na+ binding to thrombin, we shift the balance between procoagulant and anticoagulant activities of the enzyme. Those mutants, compared to wild-type, have reduced specificity toward fibrinogen, but enhanced or slightly reduced specificity toward protein C. Because this engineering strategy targets a fundamental regulatory mechanism, it is amenable of extension to other enzymes of biological and pharmacological importance.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lesk, A.M. and Fordham, W.D. 1996. Conservation and variability in the structures of serine proteinases of the chymotrypsin family. J. Mol. Biol. 258: 501–537.

    Article  CAS  Google Scholar 

  2. Neurath, H. Evolution of proteolytic enzymes. 1984. Science 224: 350–357.

    Article  CAS  Google Scholar 

  3. Davie, E.W., Fujikawa, K., and Kisiel, W. 1991. The coagulation cascade: initiation, maintenance and regulation. Biochemistry 30: 10363–10370.

    Article  CAS  Google Scholar 

  4. Mann, K.G., Nesheim, M.E., Church, W.R., Haley, P., and Krishnaswamy, S. 1990. Surface dependent reactions of the vitamin K-dependent enzyme complexes. Blood 76: 1–16.

    CAS  PubMed  Google Scholar 

  5. Patthy, L. 1990. Evolution of blood coagulation and fibrinolysis. Blood Coagul. Fibrinol. 1: 153–166.

    CAS  Google Scholar 

  6. Reid, K.B.M., Bentley, D.R., Campbell, R.D., Chung, L.D., Sim, R.B., Kristensen, T., and Tack, B.F. 1989. Complement system proteins which interact with C3B or C4B. Immunol. Today 7: 230–234.

    Article  Google Scholar 

  7. Chasan, R. and Anderson, K.V. 1989. The role of Easter, an apparent serine protease, in organizing the dorsal-ventral pattern of the Drosophila embryo. Cell 56: 391–400.

    Article  CAS  Google Scholar 

  8. Smith, C.L. and DeLotto, R. 1994. Ventralizing signal determined by protease activation in Drosophila embryogenesis. Nature 368: 548–551.

    Article  CAS  Google Scholar 

  9. Doolittle, R.F. and Feng, D.F. 1987. Reconstructing the evolution of vertebrate blood coagulation from a consideration of the amino acid sequences of clotting factors. Cold Spring Harbor Symp. Quant. Biol. 52: 869–874.

    Article  CAS  Google Scholar 

  10. Rawlings, R.D. and Barrett, A.J. 1993. Evolutionary families of peptidases. Biochem. J. 290: 205–218.

    Article  CAS  Google Scholar 

  11. Perona, J.J. and Craik, C.S. 1995. Structural basis of substrate specificity in serine proteinases. Protein Sci. 4: 337–360.

    Article  CAS  Google Scholar 

  12. Craik, C.S., Largman, C., Fletcher, T., Roczniak, S., Barr, P.J., Fletterick, R.J., and Rutter, W.J. 1985. Redesigning trypsin: alteration of substrate specificity. Science 228: 291–297.

    Article  CAS  Google Scholar 

  13. Hedstrom, L., Szilagyi, L., and Rutter, W.J. 1992. Converting trypsin to chymotrypsin: the rote of surface loops. Science 255: 1249–1253.

    Article  CAS  Google Scholar 

  14. Dang, Q.D. and Di Cera, E. 1996. Residue 225 determines the Na+-induced allosteric regulation of catalytic activity in serine proteases. Proc. Natl. Acad. Sci. USA 93: 10653–10656.

    Article  CAS  Google Scholar 

  15. Krem, M.M. and Di Cera, E. Conserved water molecules in the specificity pocket of serine proteases and the mechanism of Na+ binding. Submitted for publication.

  16. Dang, Q.D., Vindigni, A., and Di Cera, E. 1995. An allosteric switch controls the procoagulant and anticoagulant activities of thrombin. Proc. Natl. Acad. Sci. USA 92: 5977–5981.

    Article  CAS  Google Scholar 

  17. Wells, C.M. and Di Cera, E. 1992. Thrombin is a Na+ activated enzyme. Biochemistry 31: 11721–11730.

    Article  CAS  Google Scholar 

  18. Guinto, E.R. and Di Cera, E. 1996. Large heat capacity change in a protein-monovalent cation interaction. Biochemistry 35: 8800–8804.

    Article  CAS  Google Scholar 

  19. Berg, D.T., Wiley, M.R., and Grinnell, B.W. 1996. Enhanced protein C activation and inhibition of fibrinogen cleavage by a thrombin modulator. Science 273: 1389–1391.

    Article  CAS  Google Scholar 

  20. Di Cera, E., Guinto, E.R., Vindigni, A., Dang, Q.D., Ayala, Y.M., Wuyi, M., and Tulinsky, A., 1995. The Na+ binding site of thrombin. J. Biol. Chem. 270: 22089–22092.

    Article  CAS  Google Scholar 

  21. Zhang, E. and Tulinsky, A. 1997. The molecular environment of the Na+ binding site of thrombin. Biophys. Chem., in press.

  22. Dougherty, D.A. 1996. Cation-π interactions in chemistry and biology: a new view of benzene, Phe, Tyr and Trp. Science 271: 163–168.

    Article  CAS  Google Scholar 

  23. Stubbs, M., Oschkinat, H., Mayr, I., Huber, R., Angliker, H., Stone, S.R., and Bode, W. 1992. The interaction of thrombin with fibrinogen. A structural basis for its specificity. Ear. J. Biochgm. 206: 187–195.

    Article  CAS  Google Scholar 

  24. Martin, P.O., Robertson, W., Turk, D., Huber, R., Bode, W., and Edwards, B.F.P. 1992. The structure of residues 7-16 of the Aα chain of human fibrinogen bound to bovine thrombin at 2. 3 Å resolution. J. Biol. Chem. 267: 7911–7920.

    CAS  PubMed  Google Scholar 

  25. Mathews, I.I., Padmanabhan, K.P., Tulinsky, A., and Sadler, J.E. 1994. Structure of a nonadecapeptide of the fifth EGF domain of thrombomodulin complexed with thrombin. Biochemistry 33: 13547–13552.

    Article  CAS  Google Scholar 

  26. Gibbs, C.S., Coutre, S.E., Tsiang, M., Li, W.-X., Jain, A.K., Dunn, K.E., Law, V.S., Mao, C.T., Matsumura, S.Y., Mejza, S.J., Paborsky, L.R., and Leung, L.L.K. 1995. Conversion of thrombin into an anticoagulant by protein engineering. Nature 378: 413–416.

    Article  CAS  Google Scholar 

  27. Miyata, T., Aruga, R., Umeyama, H., Bezeaud, A., Guillin, M.C., and Iwanaga, S., 1992. Prothrombin Salakta: substitution of Glu466 by Ala reduced the fibrinogen clotting activity and the esterase activity. Biochemistry 31: 7457–7462.

    Article  CAS  Google Scholar 

  28. Le Bonniec, B.F. and Esmon, C.T. 1991. Glu192Gln substitution in thrombin mimics the catalytic switch induced by thrombomodulin. Proc. Natl. Acad. Sci. USA 88: 7371–7375.

    Article  CAS  Google Scholar 

  29. Wu, Q., Sheehan, J.P., Tsiang, M., Lentz, S.R., Birktoft, J.J., and Sadler, J.E. 1991. Single amino acid substitutions dissociate fibrinogen clotting and thrombomodulin binding activities of human thrombin. Proc. Natl. Acad. Sci. USA 88: 6775–6779.

    Article  CAS  Google Scholar 

  30. Jin, Y. and Anderson, K.V. 1990. Dominant and recessive alleles of the Drosophila easter gene are point mutations at conserved sites in the serine protease catalytic domain. Cell 60: 873–881.

    Article  CAS  Google Scholar 

  31. Guinto, E.R., Vindigni, A., Ayala, Y., Dang, Q.D., and Di Cera, E. 1995. Identification of residues linked to the slow→fast transition of thrombin. Proc. Natl. Acad. Sci. USA 92: 11185–11189.

    Article  CAS  Google Scholar 

  32. Seegers, W.H., Teng, C.-M., and Novoa, E. 1990. Preparation of bovine prethrombin-2: use of acutin and activation with prothrombinase or ecarin. Thrombosis Res. 19: 11–20.

    Article  Google Scholar 

  33. Vindigni, A. and Di Cera, E. 1996. Release of fibrinopeptides by the slow and fast forms of thrombin. Biochemistry 35: 4417–4426.

    Article  CAS  Google Scholar 

  34. Ng, A.S., Lewis, S.D., and Shafer, J.A. 1993. Quantifying thrombin-catalyzed release of fibrinopeptides from fibrinogen using high-performance liquid chromatography. Methods Enzymol. 222: 341–358.

    Article  CAS  Google Scholar 

  35. Vindigni, A., White, C.A., Komives, E.A., and Di Cera, E. Energetics of thrombin-thrombomodulin interaction. Submitted for publication.

  36. Olson, S.T., Bjork, I., and Shore, J.D. 1993. Kinetic characterization of heparin-catalyzed and uncatalyzed inhibition of blood coagulation proteinases by antithrombin. Methods Enzymol. 222: 525–542.

    Article  CAS  Google Scholar 

  37. Di Cera, E., Hopfner, K.-P., and Dang, Q.D. 1996. Theory of allosteric effects in serine proteases. Biophys. J. 70: 174–181.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dang, Q., Guinto, E. & Cera, E. Rational engineering of activity and specificity in a serine protease. Nat Biotechnol 15, 146–149 (1997). https://doi.org/10.1038/nbt0297-146

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0297-146

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing