Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Profiling of engineering hotspots identifies an allosteric CRISPR-Cas9 switch

Abstract

The clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated protein Cas9 from Streptococcus pyogenes is an RNA-guided DNA endonuclease with widespread utility for genome modification. However, the structural constraints limiting the engineering of Cas9 have not been determined. Here we experimentally profile Cas9 using randomized insertional mutagenesis and delineate hotspots in the structure capable of tolerating insertions of a PDZ domain without disruption of the enzyme's binding and cleavage functions. Orthogonal domains or combinations of domains can be inserted into the identified sites with minimal functional consequence. To illustrate the utility of the identified sites, we construct an allosterically regulated Cas9 by insertion of the estrogen receptor-α ligand-binding domain. This protein showed robust, ligand-dependent activation in prokaryotic and eukaryotic cells, establishing a versatile one-component system for inducible and reversible Cas9 activation. Thus, domain insertion profiling facilitates the rapid generation of new Cas9 functionalities and provides useful data for future engineering of Cas9.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mapping the insertion potential of Cas9 with the PDZ domain.
Figure 2: Creation of a switch-like Cas9 though insertion of the ER-LBD in E. coli.
Figure 3: Validation of arC9 in eukaryotic cells.

Similar content being viewed by others

Accession codes

Accessions

BioProject

Protein Data Bank

References

  1. Lander, E.S. et al. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  Google Scholar 

  2. Peisajovich, S.G., Garbarino, J.E., Wei, P. & Lim, W.A. Rapid diversification of cell signaling phenotypes by modular domain recombination. Science 328, 368–372 (2010).

    Article  CAS  Google Scholar 

  3. Chothia, C., Gough, J., Vogel, C. & Teichmann, S.A. Evolution of the protein repertoire. Science 300, 1701–1703 (2003).

    Article  CAS  Google Scholar 

  4. Jinek, M. et al. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  Google Scholar 

  5. Doudna, J.A. & Charpentier, E. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).

    Article  Google Scholar 

  6. Hsu, P.D., Lander, E.S. & Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

    Article  CAS  Google Scholar 

  7. Gilbert, L.A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).

    Article  CAS  Google Scholar 

  8. Guilinger, J.P., Thompson, D.B. & Liu, D.R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 32, 577–582 (2014).

    Article  CAS  Google Scholar 

  9. Chen, B. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155, 1479–1491 (2013).

    Article  CAS  Google Scholar 

  10. Nishimasu, H. et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156, 935–949 (2014).

    Article  CAS  Google Scholar 

  11. Anders, C., Niewoehner, O., Duerst, A. & Jinek, M. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513, 569–573 (2014).

    Article  CAS  Google Scholar 

  12. Tanenbaum, M.E., Gilbert, L.A., Qi, L.S., Weissman, J.S. & Vale, R.D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635–646 (2014).

    Article  CAS  Google Scholar 

  13. Davis, K.M., Pattanayak, V., Thompson, D.B., Zuris, J.A. & Liu, D.R. Small molecule-triggered Cas9 protein with improved genome-editing specificity. Nat. Chem. Biol. 11, 316–318 (2015).

    Article  CAS  Google Scholar 

  14. Reynolds, K.A., McLaughlin, R.N. & Ranganathan, R. Hot spots for allosteric regulation on protein surfaces. Cell 147, 1564–1575 (2011).

    Article  CAS  Google Scholar 

  15. Edwards, W.R., Busse, K., Allemann, R.K. & Jones, D.D. Linking the functions of unrelated proteins using a novel directed evolution domain insertion method. Nucleic Acids Res. 36, e78 (2008).

    Article  Google Scholar 

  16. Schultz, J. et al. Specific interactions between the syntrophin PDZ domain and voltage-gated sodium channels. Nat. Struct. Biol. 5, 19–24 (1998).

    Article  CAS  Google Scholar 

  17. Dueber, J.E. et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nat. Biotechnol. 27, 753–759 (2009).

    Article  CAS  Google Scholar 

  18. Qi, L.S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).

    Article  CAS  Google Scholar 

  19. Oakes, B.L., Nadler, D.C. & Savage, D.F. Protein engineering of Cas9 for enhanced function. Methods Enzymol. 546, 491–511 (2014).

    Article  CAS  Google Scholar 

  20. Briner, A.E.E.E. et al. Guide RNA functional modules direct Cas9 activity and orthogonality. Mol. Cell 56, 333–339 (2014).

    Article  CAS  Google Scholar 

  21. Stein, V. & Alexandrov, K. Synthetic protein switches: design principles and applications. Trends Biotechnol. 33, 101–110 (2015).

    Article  CAS  Google Scholar 

  22. Shiau, A.K. et al. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95, 927–937 (1998).

    Article  CAS  Google Scholar 

  23. Tanenbaum, D.M., Wang, Y., Williams, S.P. & Sigler, P.B. Crystallographic comparison of the estrogen and progesterone receptor's ligand binding domains. Proc. Natl. Acad. Sci. USA 95, 5998–6003 (1998).

    Article  CAS  Google Scholar 

  24. Wärnmark, A. et al. Interaction of transcriptional intermediary factor 2 nuclear receptor box peptides with the coactivator binding site of estrogen receptor-α. J. Biol. Chem. 277, 21862–21868 (2002).

    Article  Google Scholar 

  25. Tucker, C.L. & Fields, S. A yeast sensor of ligand binding. Nat. Biotechnol. 19, 1042–1046 (2001).

    Article  CAS  Google Scholar 

  26. Tsai, S.Q. et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat. Biotechnol. 32, 569–576 (2014).

    Article  CAS  Google Scholar 

  27. McIsaac, R.S. et al. Synthetic gene expression perturbation systems with rapid, tunable, single-gene specificity in yeast. Nucleic Acids Res. 41, e57 (2013).

    Article  CAS  Google Scholar 

  28. Feil, R. et al. Ligand-activated site-specific recombination in mice. Proc. Natl. Acad. Sci. USA 93, 10887–10890 (1996).

    Article  CAS  Google Scholar 

  29. Dow, L.E. et al. Inducible in vivo genome editing with CRISPR-Cas9. Nat. Biotechnol. 33, 390–394 (2015).

    Article  CAS  Google Scholar 

  30. González, F. et al. An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell 15, 215–226 (2014).

    Article  Google Scholar 

  31. Gossen, M. & Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89, 5547–5551 (1992).

    Article  CAS  Google Scholar 

  32. Gossen, M. et al. Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766–1769 (1995).

    Article  CAS  Google Scholar 

  33. Kearns, N.A. et al. Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells. Development 141, 219–223 (2014).

    Article  CAS  Google Scholar 

  34. Jiang, F., Zhou, K., Ma, L., Gressel, S. & Doudna, J.A. A Cas9-guide RNA complex preorganized for target DNA recognition. Science 348, 1477–1481 (2015).

    Article  CAS  Google Scholar 

  35. Hsu, P.D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013).

    Article  CAS  Google Scholar 

  36. Zalatan, J.G. et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160, 339–350 (2015).

    Article  CAS  Google Scholar 

  37. Shechner, D.M., Hacisuleyman, E., Younger, S.T. & Rinn, J.L. Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nat. Methods 12, 664–670 (2015).

    Article  CAS  Google Scholar 

  38. Nihongaki, Y., Kawano, F., Nakajima, T. & Sato, M. Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nat. Biotechnol. 33, 755–760 (2015).

    Article  CAS  Google Scholar 

  39. Zetsche, B., Volz, S.E. & Zhang, F. A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat. Biotechnol. 33, 139–142 (2015).

    Article  CAS  Google Scholar 

  40. Truong, D.-J.J. et al. Development of an intein-mediated split-Cas9 system for gene therapy. Nucleic Acids Res. 43, 6450–6458 (2015).

    Article  CAS  Google Scholar 

  41. Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

    Article  CAS  Google Scholar 

  42. Tiscornia, G., Singer, O. & Verma, I.M. Production and purification of lentiviral vectors. Nat. Protoc. 1, 241–245 (2006).

    Article  CAS  Google Scholar 

  43. Lin, S., Staahl, B.T., Alla, R.K. & Doudna, J.A. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. eLife 3, e04766 (2014).

    Article  Google Scholar 

  44. Fellmann, C. et al. An optimized microRNA backbone for effective single-copy RNAi. Cell Rep. 5, 1704–1713 (2013).

    Article  CAS  Google Scholar 

  45. Gibson, D.G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    Article  CAS  Google Scholar 

  46. Dull, T. et al. A third-generation lentivirus vector with a conditional packaging system. J. Virol. 72, 8463–8471 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Sanjana, N.E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Qi (Stanford) and J. Dueber (UC Berkeley) for providing the E. coli strain and the PDZ and SH3 domains, respectively. We would like to thank M. O'Connell, S. Sternberg, A. Wright and S. Higgins for productive discussions and readings of the manuscript. This work was supported by a NIH New Innovator Award (1DP2EB018658-01) and a Basil O'Connor Starter Scholar Research Award from the March of Dimes (D.F.S.) and by the National Science Foundation (IQJEDMS001 to J.A.D.); A.F. is funded by a National Science Foundation Graduate Research Fellow, and B.T.S. is funded by a Roche Postdoctoral Fellowship (RPF 311).

Author information

Authors and Affiliations

Authors

Contributions

B.L.O., D.C.N., C.F., J.A.D. and D.F.S. designed the research. B.L.O., D.C.N., C.F., A.F. and B.T.S. performed the experiments. A.F. performed the computational analysis. B.L.O., A.F., C.F. and D.F.S. analyzed the data. B.L.O., C.F., J.A.D. and D.F.S. wrote the paper. Reagents described in this work are available on Addgene (https://www.addgene.org/David_Savage/).

Corresponding author

Correspondence to David F Savage.

Ethics declarations

Competing interests

The authors have submitted a patent disclosure on this work. J.A.D. is employed by HHMI and works at the University at California Berkeley, which have patents pending for CRISPR technologies on which she is an inventor. J.A.D. is the executive director of the Innovative Genomics Initiative at UC Berkeley and UCSF. J.A.D. is a cofounder of Editas Medicine, Intellia Therapeutics and Caribou Biosciences and a scientific advisor to Caribou, Intellia, eFFECTOR Therapeutics and Driver.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–18 (PDF 7933 kb)

Supplementary Table 1

Significant PDZ-insertion data (XLSX 36 kb)

Supplementary Table 2

All sequences (5′-3′) (XLSX 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oakes, B., Nadler, D., Flamholz, A. et al. Profiling of engineering hotspots identifies an allosteric CRISPR-Cas9 switch. Nat Biotechnol 34, 646–651 (2016). https://doi.org/10.1038/nbt.3528

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.3528

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research