Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Allosteric targeting of receptor tyrosine kinases

Abstract

The drug discovery landscape has been transformed over the past decade by the discovery of allosteric modulators of all major mammalian receptor superfamilies. Allosteric ligands are a rich potential source of drugs and drug targets with clear therapeutic advantages. G protein–coupled receptors, ligand-gated ion channels and intracellular nuclear hormone receptors have all been targeted by allosteric modulators. More recently, a receptor tyrosine kinase (RTK) has been targeted by an extracellular small-molecule allosteric modulator. Allosteric mechanisms of structurally distinct molecules that target the various receptor families are more alike than originally anticipated and include selectivity, orthosteric probe dependence and pathway-biased signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: All superfamilies of cellular receptors can be allosterically modulated.
Figure 2: Orthosteric versus allosteric receptor mechanisms.
Figure 3: Kinase inhibitors with allosteric properties.
Figure 4: Mechanism of a small-molecule allosteric FGFR inhibitor.
Figure 5: Allosteric targeting strategies for RTKs Schematic representations of RTKs that are targeted by allosteric inhibitors.

Similar content being viewed by others

References

  1. Hopkins, A.L. & Groom, C.R. The druggable genome. Nat. Rev. Drug Discov. 1, 727–730 (2002).

    Article  CAS  Google Scholar 

  2. Overington, J.P., Al-Lazikani, B. & Hopkins, A.L. How many drug targets are there? Nat. Rev. Drug Discov. 5, 993–996 (2006).

    Article  CAS  Google Scholar 

  3. Lundstrom, K. An overview on GPCRs and drug discovery: structure-based drug design and structural biology on GPCRs. Methods Mol. Biol. 552, 51–66 (2009).

    Article  CAS  Google Scholar 

  4. Neubig, R.R., Spedding, M., Kenakin, T. & Christopoulos, A. International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification. XXXVIII. Update on terms and symbols in quantitative pharmacology. Pharmacol. Rev. 55, 597–606 (2003).

    Article  CAS  Google Scholar 

  5. Wootten, D., Christopoulos, A. & Sexton, P.M. Emerging paradigms in GPCR allostery: implications for drug discovery. Nat. Rev. Drug Discov. 12, 630–644 (2013).

    Article  CAS  Google Scholar 

  6. Kenakin, T. & Christopoulos, A. Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nat. Rev. Drug Discov. 12, 205–216 (2013).

    Article  CAS  Google Scholar 

  7. Christopoulos, A. Allosteric binding sites on cell-surface receptors: novel targets for drug discovery. Nat. Rev. Drug Discov. 1, 198–210 (2002).

    Article  CAS  Google Scholar 

  8. Conn, P.J., Christopoulos, A. & Lindsley, C.W. Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nat. Rev. Drug Discov. 8, 41–54 (2009).

    Article  CAS  Google Scholar 

  9. De Amici, M., Dallanoce, C., Holzgrabe, U., Trankle, C. & Mohr, K. Allosteric ligands for G protein-coupled receptors: a novel strategy with attractive therapeutic opportunities. Med. Res. Rev. 30, 463–549 (2010).

    CAS  PubMed  Google Scholar 

  10. Moore, T.W., Mayne, C.G. & Katzenellenbogen, J.A. Minireview: Not picking pockets: nuclear receptor alternate-site modulators (NRAMs). Mol. Endocrinol. 24, 683–695 (2010).

    Article  CAS  Google Scholar 

  11. Bono, F. et al. Inhibition of tumor angiogenesis and growth by a small-molecule multi-FGF receptor blocker with allosteric properties. Cancer Cell 23, 477–488 (2013).

    Article  CAS  Google Scholar 

  12. Herbert, C. et al. Molecular mechanism of SSR128129E, an extracellularly acting, small-molecule, allosteric inhibitor of FGF receptor signaling. Cancer Cell 23, 489–501 (2013).

    Article  CAS  Google Scholar 

  13. Melancon, B.J. et al. Allosteric modulation of seven transmembrane spanning receptors: theory, practice, and opportunities for central nervous system drug discovery. J. Med. Chem. 55, 1445–1464 (2012).

    Article  CAS  Google Scholar 

  14. McEwan, I.J. Nuclear hormone receptors: allosteric switches. Mol. Cell. Endocrinol. 348, 345–347 (2012).

    Article  CAS  Google Scholar 

  15. Estébanez-Perpiñá, E. et al. A surface on the androgen receptor that allosterically regulates coactivator binding. Proc. Natl. Acad. Sci. USA 104, 16074–16079 (2007).

    Article  Google Scholar 

  16. Birdsall, N.J. & Lazareno, S. Allosterism at muscarinic receptors: ligands and mechanisms. Mini Rev. Med. Chem. 5, 523–543 (2005).

    Article  CAS  Google Scholar 

  17. Lemmon, M.A. & Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 141, 1117–1134 (2010).

    Article  CAS  Google Scholar 

  18. O′Hayre, M. et al. The emerging mutational landscape of G proteins and G-protein-coupled receptors in cancer. Nat. Rev. Cancer 13, 412–424 (2013).

    Article  Google Scholar 

  19. Shah, D.R., Shah, R.R. & Morganroth, J. Tyrosine kinase inhibitors: their on-target toxicities as potential indicators of efficacy. Drug Safety 36, 413–426 (2013).

    Article  CAS  Google Scholar 

  20. He, K. et al. Blockade of glioma proliferation through allosteric inhibition of JAK2. Sci. Signal. 6, ra55 (2013).

    Article  Google Scholar 

  21. Zhang, J., Yang, P.L. & Gray, N.S. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer 9, 28–39 (2009).

    Article  Google Scholar 

  22. Grebien, F. et al. Targeting the SH2-kinase interface in Bcr-Abl inhibits leukemogenesis. Cell 147, 306–319 (2011).

    Article  CAS  Google Scholar 

  23. Hantschel, O., Grebien, F. & Superti-Furga, G. The growing arsenal of ATP-competitive and allosteric inhibitors of BCR-ABL. Cancer Res. 72, 4890–4895 (2012).

    Article  CAS  Google Scholar 

  24. Zhang, J. et al. Targeting Bcr-Abl by combining allosteric with ATP-binding-site inhibitors. Nature 463, 501–506 (2010).

    Article  CAS  Google Scholar 

  25. Gui, D.Y., Lewis, C.A. & Vander Heiden, M.G. Allosteric regulation of PKM2 allows cellular adaptation to different physiological states. Sci. Signal. 6, pe7 (2013).

    Article  Google Scholar 

  26. Chaneton, B. et al. Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature 491, 458–462 (2012).

    Article  CAS  Google Scholar 

  27. Cherrin, C. et al. An allosteric Akt inhibitor effectively blocks Akt signaling and tumor growth with only transient effects on glucose and insulin levels in vivo. Cancer Biol. Ther. 9, 493–503 (2010).

    Article  CAS  Google Scholar 

  28. Burke, J.R. et al. BMS-345541 is a highly selective inhibitor of I kappa B kinase that binds at an allosteric site of the enzyme and blocks NF-kappa B-dependent transcription in mice. J. Biol. Chem. 278, 1450–1456 (2003).

    Article  CAS  Google Scholar 

  29. Leonard, T.A., Rozycki, B., Saidi, L.F., Hummer, G. & Hurley, J.H. Crystal structure and allosteric activation of protein kinase C betaII. Cell 144, 55–66 (2011).

    Article  CAS  Google Scholar 

  30. Karaman, M.W. et al. A quantitative analysis of kinase inhibitor selectivity. Nat. Biotechnol. 26, 127–132 (2008).

    Article  CAS  Google Scholar 

  31. Suárez, R.M. et al. Inhibitors of the TAM subfamily of tyrosine kinases: synthesis and biological evaluation. Eur. J. Med. Chem. 61, 2–25 (2013).

    Article  Google Scholar 

  32. Yang, Y., Yuzawa, S. & Schlessinger, J. Contacts between membrane proximal regions of the PDGF receptor ectodomain are required for receptor activation but not for receptor dimerization. Proc. Natl. Acad. Sci. USA 105, 7681–7686 (2008).

    Article  CAS  Google Scholar 

  33. Hyde, C.A. et al. Targeting extracellular domains D4 and D7 of vascular endothelial growth factor receptor 2 reveals allosteric receptor regulatory sites. Mol. Cell. Biol. 32, 3802–3813 (2012).

    Article  CAS  Google Scholar 

  34. Yang, Y., Xie, P., Opatowsky, Y. & Schlessinger, J. Direct contacts between extracellular membrane-proximal domains are required for VEGF receptor activation and cell signaling. Proc. Natl. Acad. Sci. USA 107, 1906–1911 (2010).

    Article  CAS  Google Scholar 

  35. Laine, E., Auclair, C. & Tchertanov, L. Allosteric communication across the native and mutated KIT receptor tyrosine kinase. PLoS Comput. Biol. 8, e1002661 (2012).

    Article  CAS  Google Scholar 

  36. Leppänen, V.M. et al. Structural and mechanistic insights into VEGF receptor 3 ligand binding and activation. Proc. Natl. Acad. Sci. USA 110, 12960–12965 (2013).

    Article  Google Scholar 

  37. Macdonald-Obermann, J.L. & Pike, L.J. The intracellular juxtamembrane domain of the epidermal growth factor (EGF) receptor is responsible for the allosteric regulation of EGF binding. J. Biol. Chem. 284, 13570–13576 (2009).

    Article  CAS  Google Scholar 

  38. Thiel, K.W. & Carpenter, G. Epidermal growth factor receptor juxtamembrane region regulates allosteric tyrosine kinase activation. Proc. Natl. Acad. Sci. USA 104, 19238–19243 (2007).

    Article  CAS  Google Scholar 

  39. Li, E. & Hristova, K. Receptor tyrosine kinase transmembrane domains: Function, dimer structure and dimerization energetics. Cell Adh. Migr. 4, 249–254 (2010).

    Article  Google Scholar 

  40. Jang, S.W. et al. Gambogic amide, a selective agonist for TrkA receptor that possesses robust neurotrophic activity, prevents neuronal cell death. Proc. Natl. Acad. Sci. USA 104, 16329–16334 (2007).

    Article  CAS  Google Scholar 

  41. Cazorla, M. et al. Cyclotraxin-B, the first highly potent and selective TrkB inhibitor, has anxiolytic properties in mice. PLoS ONE 5, e9777 (2010).

    Article  Google Scholar 

  42. Udugamasooriya, D.G., Dineen, S.P., Brekken, R.A. & Kodadek, T. A peptoid “antibody surrogate” that antagonizes VEGF receptor 2 activity. J. Am. Chem. Soc. 130, 5744–5752 (2008).

    Article  CAS  Google Scholar 

  43. Endres, N.F., Engel, K., Das, R., Kovacs, E. & Kuriyan, J. Regulation of the catalytic activity of the EGF receptor. Curr. Opin. Struct. Biol. 21, 777–784 (2011).

    Article  CAS  Google Scholar 

  44. Fleishman, S.J., Schlessinger, J. & Ben-Tal, N. A putative molecular-activation switch in the transmembrane domain of erbB2. Proc. Natl. Acad. Sci. USA 99, 15937–15940 (2002).

    Article  CAS  Google Scholar 

  45. Leahy, D.J. A molecular view of anti-ErbB monoclonal antibody therapy. Cancer Cell 13, 291–293 (2008).

    Article  CAS  Google Scholar 

  46. Jura, N. et al. Catalytic control in the EGF receptor and its connection to general kinase regulatory mechanisms. Mol. Cell 42, 9–22 (2011).

    Article  CAS  Google Scholar 

  47. Tvorogov, D. et al. Effective suppression of vascular network formation by combination of antibodies blocking VEGFR ligand binding and receptor dimerization. Cancer Cell 18, 630–640 (2010).

    Article  CAS  Google Scholar 

  48. Jaffe, E.K. Impact of quaternary structure dynamics on allosteric drug discovery. Curr. Top. Med. Chem. 13, 55–63 (2013).

    Article  CAS  Google Scholar 

  49. Grünewald, F.S., Prota, A.E., Giese, A. & Ballmer-Hofer, K. Structure-function analysis of VEGF receptor activation and the role of coreceptors in angiogenic signaling. Biochim. Biophys. Acta 1804, 567–580 (2010).

    Article  Google Scholar 

  50. Murakami, M., Elfenbein, A. & Simons, M. Non-canonical fibroblast growth factor signalling in angiogenesis. Cardiovasc. Res. 78, 223–231 (2008).

    Article  CAS  Google Scholar 

  51. Weisheit, S., Schafer, C., Mertens, C., Berndt, A. & Liebmann, C. PKCepsilon acts as negative allosteric modulator of EGF receptor signalling. Cell. Signal. 23, 436–448 (2011).

    Article  CAS  Google Scholar 

  52. Weisheit, S. & Liebmann, C. Allosteric modulation by protein kinase Cepsilon leads to modified responses of EGF receptor towards tyrosine kinase inhibitors. Cell. Signal. 24, 422–434 (2012).

    Article  CAS  Google Scholar 

  53. Landgraf, K.E. et al. Allosteric peptide activators of pro-hepatocyte growth factor stimulate Met signaling. J. Biol. Chem. 285, 40362–40372 (2010).

    Article  CAS  Google Scholar 

  54. Perron, M. et al. Allosteric non-competitive small molecule selective inhibitors of CD45 tyrosine phosphatase suppress T-cell receptor signals and inflammation in vivo. Mol. Pharmacol. 85, 553–563 (2014).

    Article  Google Scholar 

  55. Hardy, J.A. & Wells, J.A. Searching for new allosteric sites in enzymes. Curr. Opin. Struct. Biol. 14, 706–715 (2004).

    Article  CAS  Google Scholar 

  56. Lebakken, C.S., Reichling, L.J., Ellefson, J.M. & Riddle, S.M. Detection of allosteric kinase inhibitors by displacement of active site probes. J. Biomol. Screen. 17, 813–821 (2012).

    Article  CAS  Google Scholar 

  57. Yang, J.S., Seo, S.W., Jang, S., Jung, G.Y. & Kim, S. Rational engineering of enzyme allosteric regulation through sequence evolution analysis. PLoS Comput. Biol. 8, e1002612 (2012).

    Article  CAS  Google Scholar 

  58. Corbin, J.A. et al. Improved glucose metabolism in vitro and in vivo by an allosteric monoclonal antibody that increases insulin receptor binding affinity. PLoS ONE 9, e88684 (2014).

    Article  Google Scholar 

  59. Lee, S., Jilani, S.M., Nikolova, G.V., Carpizo, D. & Iruela-Arispe, M.L. Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J. Cell Biol. 169, 681–691 (2005).

    Article  CAS  Google Scholar 

  60. McTigue, M. et al. Molecular conformations, interactions, and properties associated with drug efficiency and clinical performance among VEGFR TK inhibitors. Proc. Natl. Acad. Sci. USA 109, 18281–18289 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

F.D.S. is supported by the Fund for Scientific Research (FWO), Flanders. A.C. is a principal research fellow of the National Health and Medical Research Council of Australia. This work is supported by grant #G.0789.11 and #G.00764.10 from the FWO, Belgium; the Belgian Science Policy (IAP #P7/03); Leducq Network of Excellence; and long-term structural Methusalem funding by the Flemish Government to P.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Carmeliet.

Ethics declarations

Competing interests

Peter Carmeliet and Frederik De Smet declare to be named as inventors on patent applications, claiming subject matter related to the results described in this paper.

Arthur Christopoulous has no competing interest with regards to this review article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Smet, F., Christopoulos, A. & Carmeliet, P. Allosteric targeting of receptor tyrosine kinases. Nat Biotechnol 32, 1113–1120 (2014). https://doi.org/10.1038/nbt.3028

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.3028

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research