Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cultured cambial meristematic cells as a source of plant natural products

Abstract

A plethora of important, chemically diverse natural products are derived from plants1. In principle, plant cell culture offers an attractive option for producing many of these compounds2,3. However, it is often not commercially viable because of difficulties associated with culturing dedifferentiated plant cells (DDCs) on an industrial scale3. To bypass the dedifferentiation step, we isolated and cultured innately undifferentiated cambial meristematic cells (CMCs). Using a combination of deep sequencing technologies, we identified marker genes and transcriptional programs consistent with a stem cell identity. This notion was further supported by the morphology of CMCs, their hypersensitivity to γ-irradiation and radiomimetic drugs and their ability to differentiate at high frequency. Suspension culture of CMCs derived from Taxus cuspidata, the source of the key anticancer drug, paclitaxel (Taxol)2,3, circumvented obstacles routinely associated with the commercial growth of DDCs. These cells may provide a cost-effective and environmentally friendly platform for sustainable production of a variety of important plant natural products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Isolation and culture of T. cuspidata CMCs.
Figure 2: Characterization of CMCs from T. cuspidata, including transcriptome profiling using digital gene expression tags.
Figure 3: Growth and natural product biosynthesis of CMC suspensions.

Similar content being viewed by others

Accession codes

Accessions

Sequence Read Archive

References

  1. Schmidt, B.M., Ribnicky, D.M., Lipsky, P.E. & Raskin, I. Revisiting the ancient concept of botanical therapeutics. Nat. Chem. Biol. 3, 360–366 (2007).

    Article  CAS  Google Scholar 

  2. Croteau, R., Ketchum, R.E.B., Long, R.M., Kaspera, R. & Wildung, M.R. Taxol biosynthesis and molecular genetics. Phytochem. Rev. 5, 75–97 (2006).

    Article  CAS  Google Scholar 

  3. Roberts, S.C. Production and engineering of terpenoids in plant cell culture. Nat. Chem. Biol. 3, 387–395 (2007).

    Article  CAS  Google Scholar 

  4. Laux, T. The stem cell concept in plants: a matter of debate. Cell 113, 281–283 (2003).

    Article  CAS  Google Scholar 

  5. Thorpe, T.A. History of plant tissue culture. Mol. Biotechnol. 37, 169–180 (2007).

    Article  CAS  Google Scholar 

  6. Sugimoto, K., Jiao, Y. & Meyerowitz, E.M. Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Dev. Cell 18, 463–471 (2010).

    Article  CAS  Google Scholar 

  7. Grafi, G. et al. Histone methylation controls telomerase-independent telomere lengthening in cells undergoing dedifferentiation. Dev. Biol. 306, 838–846 (2007).

    Article  CAS  Google Scholar 

  8. Baebler, S. et al. Establishment of cell suspension cultures of yew (Taxus x Media Rehd) and assessment of their genomic stability. In Vitro Cell. Dev. Biol. Plant 41, 338–343 (2005).

    Article  CAS  Google Scholar 

  9. Ye, Z.-H. Vascular tissue differentiation and pattern formation in plants. Annu. Rev. Plant Biol. 53, 183–202 (2002).

    Article  CAS  Google Scholar 

  10. Strobel, G.A. et al. Taxol formation in yew-Taxus. Plant Sci. 92, 1–12 (1993).

    Article  CAS  Google Scholar 

  11. Frankenstein, C., Eckstein, D. & Schmitt, U. The onset of cambium activity - A matter of agreement? Dendrochronologia 23, 57–62 (2005).

    Article  Google Scholar 

  12. Moore, R., Clark, W.D., Stern, K.R. & Vodopich, D. (eds.) Botany (Wm.C. Brown, Dubuque, lowa, USA; 1995).

  13. Turner, S., Gallois, P. & Brown, D. Tracheary element differentiation. Annu. Rev. Plant Biol. 58, 407–433 (2007).

    Article  CAS  Google Scholar 

  14. Ito, Y. et al. Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science 313, 842–845 (2006).

    Article  CAS  Google Scholar 

  15. Fulcher, N. & Sablowski, R. Hypersensitivity to DNA damage in plant stem cell niches. Proc. Natl. Acad. Sci. USA 106, 20984–20988 (2009).

    Article  CAS  Google Scholar 

  16. Shendure, J. & Ji, H. Next-generation DNA sequencing. Nat. Biotechnol. 26, 1135–1145 (2008).

    Article  CAS  Google Scholar 

  17. Fisher, K. & Turner, S. PXY, a receptor-like kinase essential for maintaining polarity during plant vascular-tissue development. Curr. Biol. 17, 1061–1066 (2007).

    Article  CAS  Google Scholar 

  18. Mähönen, A.P. et al. A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes Dev. 14, 2938–2943 (2000).

    Article  Google Scholar 

  19. Nieminen, K. et al. Cytokinin signaling regulates cambial development in popular. Proc. Natl. Acad. Sci. USA 105, 20032–20037 (2008).

    Article  CAS  Google Scholar 

  20. Rando, T.A. The immortal strand hypothesis: segregation and reconstruction. Cell 129, 1239–1243 (2007).

    Article  CAS  Google Scholar 

  21. Joshi, J.B., Elias, C.B. & Patole, M.S. Role of hydrodynamic shear in the cultivation of animal, plant and microbial cells. Chem. Eng. J. 62, 121–141 (1996).

    CAS  Google Scholar 

  22. Wang, C., Wu, J. & Mei, X. Enhanced taxol production and release in Taxus chinesis cell suspension cultures with selected organic solvents and sucrose feeding. Biotechnol. Prog. 17, 89–94 (2001).

    Article  Google Scholar 

  23. Mirjalili, N. & Linden, J.C. Methyl jasmonate induced production of Taxol in suspension cultures of Taxus cuspidata: Ethylene interaction and induction models. Biotechnol. Prog. 12, 110–118 (1996).

    Article  CAS  Google Scholar 

  24. Wu, Z.L., Yuan, Y.-J., Ma, Z.-H. & Hu, Z.D. Kinetics of two-liquid-phase Taxus cuspidata cell culture for production of Taxol. Biochem. Eng. J. 5, 137–142 (2000).

    Article  CAS  Google Scholar 

  25. Yang, S.-J., Fang, J.-M. & Cheng, Y.-S. Lignans, flavonoids and phenolic derivatives from Taxus mairei. J. Chinese Chem. Soc. 46, 811–818 (1999).

    Article  CAS  Google Scholar 

  26. Bai, J. et al. Production of biologically active taxoids by a callus culture of Taxus cuspidata. J. Nat. Prod. 67, 58–63 (2004).

    Article  CAS  Google Scholar 

  27. Leung, K.W. & Wong, A.S.-T. Pharmacology of ginsenosides: a literature review. Chin. Med. 5, 20 (2010).

    Article  Google Scholar 

  28. Dan, M. et al. Metabolite profiling of Panax notoginseng using UPLC-ESI-MS. Phytochemistry 69, 2237–2244 (2008).

    Article  CAS  Google Scholar 

  29. Reynolds, L.B. Effects of harvest date on some chemical and physical characteristics of American ginseng (Panax quinquefolius L.). J. Herbs Spices Med. Plants 6, 63–69 (1998).

    Article  Google Scholar 

  30. Kutchan, T. & Dixon, R.A. Physiology and metabolism: Secondary metabolism: nature's chemical reservoir under deconvolution. Curr. Opin. Plant Biol. 8, 227–229 (2005).

    Article  Google Scholar 

  31. Gamborg, O.L., Miller, R.A. & Ojima, K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50, 151–158 (1968).

    Article  CAS  Google Scholar 

  32. Zang, X., Mei, X.-G., Zhang, C.-H., Lu, C.T. & Ke, T. Improved paclitaxel accumulation in cell suspension cultures of Taxus chinensis by brassinolide. Biotechnol. Lett. 23, 1047–1049 (2001).

    Article  Google Scholar 

  33. Yukimune, Y., Tabata, H., Higashi, Y. & Hara, Y. Methyl jasmonate-induced overproduction of paclitaxel and baccatin III in Taxus cell suspension cultures. Nat. Biotechnol. 14, 1129–1132 (1996).

    Article  CAS  Google Scholar 

  34. Fulcher, N. & Sablowski, R. Hypersensitivity to DNA damage in plant stem cell niches. Proc. Natl. Acad. Sci. USA 106, 20984–20988 (2009).

    Article  CAS  Google Scholar 

  35. Zhu, Y.Y., Machleder, E.M., Chenchik, A., Li, R. & Siebert, P.D. Reverse transcriptase template switching: A SMARTTM approach for full-length cDNA library construction. BioTech. 30, 892–897 (2001).

    Article  CAS  Google Scholar 

  36. Zhulidov, P.A. et al. Simple cDNA normalization using Kamchatka crab duplex-specific nuclease. Nucleic Acids Res. 32, e37 (2004).

    Article  Google Scholar 

  37. Margulies, M. et al. Genome sequencing in open microfabricated high-density picoliter reactors. Nature 437, 376–380 (2005).

    Article  CAS  Google Scholar 

  38. Brenner, S. et al. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat. Biotechnol. 18, 630–634 (2000).

    Article  CAS  Google Scholar 

  39. Schmid, R. & Blaxter, M.L. annot8r: GO, EC and KEGG annotation of EST datasets. BMC Bioinformatics 9, 180 (2008).

    Article  Google Scholar 

  40. Robinson, M.D., McCarthy, D.J. & Smyth, G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  Google Scholar 

  41. Gentleman, R.C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004).

    Article  Google Scholar 

  42. Bullard, J.H., Purdom, E., Hansen, K.D. & Dudoit, S. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 11, 94 (2010).

    Article  Google Scholar 

  43. Nolan, T., Hands, R.E. & Bustin, S.A. Quantification of mRNA using real-time RT-PCR. Nat. Protoc. 1, 1559–1582 (2006).

    Article  CAS  Google Scholar 

  44. Kataoka, T. et al. Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis. Plant Cell 16, 2693–2704 (2004).

    Article  CAS  Google Scholar 

  45. Lee, Y. et al. The Arabidopsis phosphatidylinositol 3-kinase is important for pollen development 1. Plant Physiol. 147, 1886–1897 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

T.W. was awarded a BBSRC CASE PhD studentship. This project was funded in part by a grant from the Korea Institute for Advancement of Technology (KIAT) (R & D project number: 10030175), the Ministry of Knowledge Economy (MKE), Republic of Korea to E.-K.L., J.H.P., S.M.H. and G.J.L. R.A. was supported by a scholarship from HEC Pakistan. E.K. was supported by a studentship from the Engineering and Physical Sciences Research Council. We acknowledge the expert technical assistance of A. Montazam and D. Cleven for Roche 454 sequencing and M. Thomson for Illumina Solexa sequencing. Further, S. Bridgett and U. Trivedi provided invaluable input for bioinformatic analysis of the deep sequencing data. All sequencing was undertaken at the GenePool facility, University of Edinburgh.

Author information

Authors and Affiliations

Authors

Contributions

E.-K.L., Y.-W.J., J.H.P., T.W. and B.-W.Y. performed experiments. R.A., E.K., S.T. and F.H. contributed to bioinformatic and statistical analysis. Z.Y., Y.M.Y. and S.M.H. carried out experiments. A.E. co-supervised E.K. E.-K.L., Y.-W.J. and G.J.L. formulated experiments. G.J.L. and E.-K.L. wrote the paper. All authors discussed results and commented on the manuscript.

Corresponding author

Correspondence to Gary J Loake.

Ethics declarations

Competing interests

E.K.L. and Y.W.J. hold stock in Unhwa Corp.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–7 and Supplementary Figs. 1–17 (PDF 2149 kb)

Supplementary Data Set 1

Assembled T. cuspidata transcriptome. (PDF 27516 kb)

Supplementary Data Set 2

BLAST analysis of T. cuspidata contigs. (PDF 1663 kb)

Supplementary Data Set 3

Digital gene expression tag profiling of CMCs. (PDF 1482 kb)

Supplementary Data Set 4

Differentially expressed contigs between T. cuspidata CMCs and DDCs. (PDF 106 kb)

Supplementary Fig. 7

Comparison of the cultural properties of the given cell lines in a 3 L air-lift bioreactor. (PDF 1566 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, EK., Jin, YW., Park, J. et al. Cultured cambial meristematic cells as a source of plant natural products. Nat Biotechnol 28, 1213–1217 (2010). https://doi.org/10.1038/nbt.1693

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1693

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research