Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Earth’s volatile contents established by melting and vaporization

Abstract

The silicate Earth is strongly depleted in moderately volatile elements (such as lead, zinc, indium and alkali elements) relative to CI chondrites, the meteorites that compositionally most closely resemble the Sun1. This depletion may be explained qualitatively by accretion of 10 to 20 per cent of a volatile-rich body to a reduced volatile-free proto-Earth2,3, followed by partial extraction of some elements to the core1. However, there are several unanswered questions regarding the sources of Earth’s volatiles4,5, notably the overabundance of indium in the silicate Earth. Here we examine the melting processes that occurred during accretion on Earth and precursor bodies and report vaporization experiments under conditions of fixed temperature and oxygen fugacity. We find that the pattern of volatile element depletion in the silicate Earth is consistent with partial melting and vaporization rather than with simple accretion of a volatile-rich chondrite-like body. We argue that melting and vaporization on precursor bodies and possibly during the giant Moon-forming impact6,7,8 were responsible for establishing the observed abundances of moderately volatile elements in Earth.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Concentrations in the bulk silicate Earth of moderately volatile elements.
Figure 2: Concentrations of selected elements in product silicate glasses.
Figure 3: Volatility factors as a function of oxygen fugacity.
Figure 4: Concentrations in the bulk silicate Earth plotted as a function of measured volatility factors.

Similar content being viewed by others

References

  1. Palme, H . & O’Neill, H. in Treatise on Geochemistry Vol. 3, Ch. 1, 1–39 (Elsevier, 2014)

    Google Scholar 

  2. O’Neill, H. S. The origin of the Moon and the early history of the Earth—a chemical model. Part 2: the Earth. Geochim. Cosmochim. Acta 55, 1159–1172 (1991)

    Article  ADS  Google Scholar 

  3. Schönbächler, M., Carlson, R. W., Horan, M. F., Mock, T. D. & Hauri, E. H. Heterogeneous accretion and the moderately volatile element budget of Earth. Science 328, 884–887 (2010)

    Article  ADS  Google Scholar 

  4. Wang, Z. C., Laurenz, V., Petitgirard, S. & Becker, H. Earth’s moderately volatile element composition may not be chondritic: evidence from In, Cd and Zn. Earth Planet. Sci. Lett. 435, 136–146 (2016)

    Article  ADS  CAS  Google Scholar 

  5. Witt-Eickschen, G., Palme, H., O’Neill, H. S. C. & Allen, C. M. The geochemistry of the volatile trace elements As, Cd, Ga, In and Sn in the Earth’s mantle: new evidence from in situ analyses of mantle xenoliths. Geochim. Cosmochim. Acta 73, 1755–1778 (2009)

    Article  ADS  CAS  Google Scholar 

  6. Canup, R. M. & Asphaug, E. Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 412, 708–712 (2001)

    Article  ADS  CAS  Google Scholar 

  7. Wang, K. & Jacobsen, S. B. Potassium isotopic evidence for a high-energy giant impact origin of the Moon. Nature 538, 487–490 (2016)

    Article  ADS  Google Scholar 

  8. Paniello, R. C., Day, J. M. D. & Moynier, F. Zinc isotopic evidence for the origin of the Moon. Nature 490, 376–379 (2012)

    Article  ADS  CAS  Google Scholar 

  9. Kleine, T. et al. Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta 73, 5150–5188 (200)

    Article  ADS  CAS  Google Scholar 

  10. Moynier, F. et al. Planetary-scale strontium isotopic heterogeneity and the age of volatile depletion of early Solar System materials. Astrophys. J. 758, 45 (2012)

    Article  ADS  Google Scholar 

  11. Roszjar, J. et al. Prolonged magmatism on 4 Vesta inferred from Hf-W analyses of eucrite zircon. Earth Planet. Sci. Lett. 452, 216–226 (2016)

    Article  ADS  CAS  Google Scholar 

  12. C´uk, M ., Hamilton, D. P ., Lock, S. J. & Stewart, S. T. Tidal evolution of the Moon from a high-obliquity, high-angular-momentum Earth. Nature 539, 402–406 (2016)

    Article  ADS  Google Scholar 

  13. Li, J. & Agee, C. B. Geochemistry of mantle–core differentiation at high pressure. Nature 381, 686–689 (1996)

    Article  ADS  CAS  Google Scholar 

  14. Wade, J. & Wood, B. J. Core formation and the oxidation state of the Earth. Earth Planet. Sci. Lett. 236, 78–95 (2005)

    Article  ADS  CAS  Google Scholar 

  15. Rubie, D. C. et al. Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed Solar System bodies and accretion of water. Icarus 248, 89–108 (2015)

    Article  ADS  CAS  Google Scholar 

  16. Canup, R. M. Simulations of a late lunar-forming impact. Icarus 168, 433–456 (2004)

    Article  ADS  CAS  Google Scholar 

  17. Genda, H. & Abe, Y. Modification of a proto-lunar disk by hydrodynamic escape of silicate vapor. Earth Planets Space 55, 53–57 (2003)

    Article  ADS  Google Scholar 

  18. Tucker, J. M. & Mukhopadhyay, S. Evidence for multiple magma ocean outgassing and atmospheric loss episodes from mantle noble gases. Earth Planet. Sci. Lett. 393, 254–265 (2014)

    Article  ADS  CAS  Google Scholar 

  19. Kato, C., Moynier, F., Valdes, M. C., Dhaliwal, J. K. & Day, J. M. D. Extensive volatile loss during formation and differentiation of the Moon. Nat. Commun. 6, 7617 (2015)

    Article  ADS  Google Scholar 

  20. Lodders, K. Solar System abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220–1247 (2003)

    Article  ADS  CAS  Google Scholar 

  21. Wasson, J. T. & Kallemeyn, G. W. Compositions of chondrites. Phil. Trans. R. Soc. Lond. A 325, 535–544 (1988)

    Article  ADS  CAS  Google Scholar 

  22. Wood, B. J., Kiseeva, E. S. & Mirolo, F. J. Accretion and core formation: the effects of sulfur on metal–silicate partition coefficients. Geochim. Cosmochim. Acta 145, 248–267 (2014)

    Article  ADS  CAS  Google Scholar 

  23. McDonough, W. F. & Sun, S.-s. The composition of the Earth. Chem. Geol. 120, 223–253 (1995)

    Article  ADS  CAS  Google Scholar 

  24. Mills, N. M., Agee, C. B. & Draper, D. S. Metal–silicate partitioning of cesium: implications for core formation. Geochim. Cosmochim. Acta 71, 4066–4081 (2007)

    Article  ADS  CAS  Google Scholar 

  25. Wood, B. J., Bryndzia, L. T. & Johnson, K. E. Mantle oxidation state and its relationship to tectonic environment and fluid speciation. Science 248, 337–345 (1990)

    Article  ADS  CAS  Google Scholar 

  26. Evans, N. J. II et al. The Spitzer c2d legacy results: star-formation rates and efficiencies; evolution and lifetimes. Astrophys. J. Suppl. Ser. 181, 321–350 (2009)

    Article  ADS  Google Scholar 

  27. Righter, K. & Drake, M. J. Core formation in Earth’s Moon, Mars, and Vesta. Icarus 124, 513–529 (1996)

    Article  ADS  CAS  Google Scholar 

  28. Marty, B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313–314, 56–66 (2012)

    Article  ADS  Google Scholar 

  29. Wang, Z. C. & Becker, H. Ratios of S, Se and Te in the silicate Earth require a volatile-rich late veneer. Nature 499, 328–331 (2013)

    Article  ADS  CAS  Google Scholar 

  30. Dingwell, D. B., O’Neill, H. S. C., Ertel, W. & Spettel, B. The solubility and oxidation state of nickel in silicate melt at low oxygen fugacities: results using a mechanically assisted equilibration technique. Geochim. Cosmochim. Acta 58, 1967–1974 (1994)

    Article  ADS  CAS  Google Scholar 

  31. Deines, P., Nafziger, R. H., Ulmer, G. C. & Woermann, E. Temperature–oxygen fugacity tables for selected gas mixtures in system C–H–O at one atmosphere total pressure. Metall. Trans. B 7, 143 (1976)

    Article  Google Scholar 

  32. Jochum, K. P. et al. MPI-DING glasses: new geological reference materials for in situ Pb isotope analysis. Geochem. Geophys. Geosyst. 6, Q10008 (2005)

    Article  ADS  Google Scholar 

  33. Jochum, K. P. et al. GeoReM: a new geochemical database for reference materials and isotopic standards. Geostand. Geoanal. Res. 29, 333–338 (2005)

    Article  CAS  Google Scholar 

  34. Griffin, W. L., Powell, W. J., Pearson, N. J. & O’Reilly, S. Y. GLITTER: data reduction software for laser ablation ICP–MS. In Laser Ablation ICP–MS in the Earth Sciences: Current Practices and Outstanding Issues (ed. Sylvestor, P. ) 308–311 (Mineralogical Association of Canada, Short Course Series Vol. 40, 2008)

    Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the European Research Council (267764) and the Science and Technology Facilities Council (UK) to B.J.W. and a Studentship to C.A.N. from the STFC. We thank D. Dingwell and his group in Munich for advice on furnace design and G. Fitton (Edinburgh) for donating the basalt.

Author information

Authors and Affiliations

Authors

Contributions

C.A.N. constructed the furnace, performed the experiments and analyses, and contributed to writing the manuscript. B.J.W. conceived the project, provided guidance and wrote a substantial part of the manuscript.

Corresponding author

Correspondence to Bernard J. Wood.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks S. Jacobsen, F. Moynier and E. Young for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Table 1 Major element compositions (in wt %) of starting material (EBT1) and product glasses from experiments F006 to F019
Extended Data Table 2 Trace element concentrations (in p.p.m.) and standard deviations (σ) of starting material and product glasses based on N analyses

PowerPoint slides

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norris, C., Wood, B. Earth’s volatile contents established by melting and vaporization. Nature 549, 507–510 (2017). https://doi.org/10.1038/nature23645

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature23645

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing