Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ageing, neurodegeneration and brain rejuvenation

Abstract

Although systemic diseases take the biggest toll on human health and well-being, increasingly, a failing brain is the arbiter of a death preceded by a gradual loss of the essence of being. Ageing, which is fundamental to neurodegeneration and dementia, affects every organ in the body and seems to be encoded partly in a blood-based signature. Indeed, factors in the circulation have been shown to modulate ageing and to rejuvenate numerous organs, including the brain. The discovery of such factors, the identification of their origins and a deeper understanding of their functions is ushering in a new era in ageing and dementia research.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ageing, neurodegeneration and brain rejuvenation.
Figure 2: Cell-specific and pathway-specific acceleration of ageing.
Figure 3: Brain rejuvenation through circulatory factors from a young mouse.

Similar content being viewed by others

References

  1. United Nations Department of Economic and Social Affairs, Population Division. World Population Ageing 2015. Report ST/ESA/SER.A/390 http://www.un.org/en/development/desa/population/publications/pdf/ageing/WPA2015_Report.pdf (United Nations, 2015).

  2. Elobeid, A., Libard, S., Leino, M., Popova, S. N. & Alafuzoff, I. Altered proteins in the aging brain. J. Neuropathol. Exp. Neurol. 75, 316–325 (2016). A comprehensive study and review of the literature describing the prevalence of protein aggregates in cognitively unimpaired aged brains.

    PubMed  PubMed Central  Google Scholar 

  3. Mrak, R. E., Griffin, S. T. & Graham, D. I. Aging-associated changes in human brain. J. Neuropathol. Exp. Neurol. 56, 1269–1275 (1997).

    CAS  PubMed  Google Scholar 

  4. Brunk, U. T. & Terman, A. The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur. J. Biochem. 269, 1996–2002 (2002).

    CAS  PubMed  Google Scholar 

  5. Safaiyan, S. et al. Age-related myelin degradation burdens the clearance function of microglia during aging. Nature Neurosci. 19, 995–998 (2016). An elegant demonstration of how age-related myelin breakdown results in the accumulation of microglial lipofuscin and cell dysfunction.

    CAS  PubMed  Google Scholar 

  6. Nixon, R. A., Cataldo, A. M. & Mathews, P. M. The endosomal-lysosomal system of neurons in Alzheimer's disease pathogenesis: a review. Neurochem. Res. 25, 1161–1172 (2000).

    CAS  PubMed  Google Scholar 

  7. Nixon, R. A. et al. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J. Neuropathol. Exp. Neurol. 64, 113–122 (2005).

    PubMed  Google Scholar 

  8. Menzies, F. M., Fleming, A. & Rubinsztein, D. C. Compromised autophagy and neurodegenerative diseases. Nature Rev. Neurosci. 16, 345–357 (2015).

    CAS  Google Scholar 

  9. Pickford, F. et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid β accumulation in mice. J. Clin. Invest. 118, 2190–2199 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Nilsson, P. et al. Aβ secretion and plaque formation depend on autophagy. Cell Rep. 5, 61–69 (2013).

    CAS  PubMed  Google Scholar 

  11. Caccamo, A. et al. mTOR regulates tau phosphorylation and degradation: implications for Alzheimer's disease and other tauopathies. Aging Cell 12, 370–380 (2013).

    CAS  PubMed  Google Scholar 

  12. Ash, P. E. A., Vanderweyde, T. E., Youmans, K. L., Apicco, D. J. & Wolozin, B. Pathological stress granules in Alzheimer's disease. Brain Res. 1584, 52–58 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Vanderweyde, T. et al. Contrasting pathology of the stress granule proteins TIA-1 and G3BP in tauopathies. J. Neurosci. 32, 8270–8283 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kawas, C. H. et al. Multiple pathologies are common and related to dementia in the oldest-old: The 90+ Study. Neurology 85, 535–542 (2015).

    PubMed  PubMed Central  Google Scholar 

  15. Dubois, B. et al. Preclinical Alzheimer's disease: definition, natural history, and diagnostic criteria. Alzheimers Dement. 12, 292–323 (2016).

    PubMed  PubMed Central  Google Scholar 

  16. Jack, C. R. et al. Suspected non-Alzheimer disease pathophysiology — concept and controversy. Nature Rev. Neurol. 12, 117–124 (2016).

    CAS  Google Scholar 

  17. Landau, S. M., Horng, A., Fero, A. & Jagust, W. J. Amyloid negativity in patients with clinically diagnosed Alzheimer disease and MCI. Neurology 86, 1377–1385 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Small, S. A., Schobel, S. A., Buxton, R. B., Witter, M. P. & Barnes, C. A. A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nature Rev. Neurosci. 12, 585–601 (2011).

    CAS  Google Scholar 

  19. Herskind, A. M. et al. The heritability of human longevity: a population-based study of 2872 Danish twin pairs born 1870–1900. Hum. Genet. 97, 319–323 (1996).

    CAS  PubMed  Google Scholar 

  20. vB Hjelmborg, J. et al. Genetic influence on human lifespan and longevity. Hum. Genet. 119, 312–321 (2006).

    PubMed  Google Scholar 

  21. Shadyab, A. H. & LaCroix, A. Z. Genetic factors associated with longevity: a review of recent findings. Ageing Res. Rev. 19, 1–7 (2015).

    CAS  PubMed  Google Scholar 

  22. Pilling, L. C. et al. Human longevity is influenced by many genetic variants: evidence from 75,000 UK Biobank participants. Aging 8, 547–560 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Newman, A. B. & Murabito, J. M. The epidemiology of longevity and exceptional survival. Epidemiol. Rev. 35, 181–197 (2013).

    PubMed  PubMed Central  Google Scholar 

  24. Erikson, G. A. et al. Whole-genome sequencing of a healthy aging cohort. Cell 165, 1002–1011 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Matteini, A. M. et al. GWAS analysis of handgrip and lower body strength in older adults in the CHARGE consortium. Aging Cell 15, 792–800 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Putin, E. et al. Deep biomarkers of human aging: application of deep neural networks to biomarker development. Aging 8, 1021–1033 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zeng, Y. et al. Novel loci and pathways significantly associated with longevity. Sci. Rep. 6, 21243 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sebastiani, P. et al. Meta-analysis of genetic variants associated with human exceptional longevity. Aging 5, 653–661 (2013).

    PubMed  PubMed Central  Google Scholar 

  29. Podtelezhnikov, A. A. et al. Molecular insights into the pathogenesis of Alzheimer's disease and its relationship to normal aging. PLoS ONE 6, e29610 (2011). The first large-scale analysis of transcriptional brain networks in ageing people and those with AD, and the discovery of an accelerated ageing profile in AD.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hernandez, D. G. et al. Distinct DNA methylation changes highly correlated with chronological age in the human brain. Hum. Mol. Genet. 20, 1164–1172 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013); erratum 16, 96 (2015). Description of an 'epigenetic clock' that correlates with tissue ageing and shows acceleration in cancer.

    PubMed  PubMed Central  Google Scholar 

  32. Horvath, S. & Ritz, B. R. Increased epigenetic age and granulocyte counts in the blood of Parkinson's disease patients. Aging 7, 1130–1142 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lunnon, K. et al. Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer's disease. Nature Neurosci. 17, 1164–1170 (2014).

    CAS  PubMed  Google Scholar 

  34. De Jager, P. L. et al. Alzheimer's disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nature Neurosci. 17, 1156–1163 (2014). A large-scale genome-wide DNA methylation study of a neurodegenerative disease.

    CAS  PubMed  Google Scholar 

  35. Lord, J. & Cruchaga, C. The epigenetic landscape of Alzheimer's disease. Nature Neurosci. 17, 1138–1140 (2014).

    CAS  PubMed  Google Scholar 

  36. Gjoneska, E. et al. Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer's disease. Nature 518, 365–369 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Satoh, J.-I., Asahina, N., Kitano, S. & Kino, Y. A comprehensive profile of ChIP-Seq-based PU.1/Spi1 target genes in microglia. Gene Regul. Syst. Bio. 8, 127–139 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    PubMed  PubMed Central  Google Scholar 

  39. Ray, S. et al. Classification and prediction of clinical Alzheimer's diagnosis based on plasma signaling proteins. Nature Med. 13, 1359–1362 (2007).

    CAS  PubMed  Google Scholar 

  40. Menni, C. et al. Circulating proteomic signatures of chronological age. J. Gerontol. A Biol. 70, 809–816 (2015).

    CAS  Google Scholar 

  41. Baird, G. S. et al. Age-dependent changes in the cerebrospinal fluid proteome by slow off-rate modified aptamer array. Am. J. Pathol. 180, 446–456 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hu, W. T. et al. Plasma multianalyte profiling in mild cognitive impairment and Alzheimer disease. Neurology 79, 897–905 (2012); erratum 79, 1935 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Johnstone, D., Milward, E. A., Berretta, R. & Moscato, P. Multivariate protein signatures of pre-clinical Alzheimer's disease in the Alzheimer's Disease Neuroimaging Initiative (ADNI) Plasma Proteome Dataset. PLoS ONE 7, e34341 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hye, A. et al. Plasma proteins predict conversion to dementia from prodromal disease. Alzheimers Dement. 10, 799–807 (2014).

    PubMed  PubMed Central  Google Scholar 

  45. Soares, H. D. et al. Plasma biomarkers associated with the apolipoprotein E genotype and Alzheimer disease. Arch. Neurol. 69, 1310–1317 (2012).

    PubMed  PubMed Central  Google Scholar 

  46. Britschgi, M. et al. Modeling of pathological traits in Alzheimer's disease based on systemic extracellular signaling proteome. Mol. Cell. Proteomics 10, M111.008862 (2011).

    PubMed  PubMed Central  Google Scholar 

  47. Kiddle, S. J. et al. Plasma based markers of [11C] PiB-PET brain amyloid burden. PLoS ONE 7, e44260 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sattlecker, M. et al. Alzheimer's disease biomarker discovery using SOMAscan multiplexed protein technology. Alzheimers Dement. 10, 724–734 (2014).

    PubMed  Google Scholar 

  49. Jaeger, P. A. et al. Network-driven plasma proteomics expose molecular changes in the Alzheimer's brain. Mol. Neurodegener. 11, 31 (2016); erratum 11, 42 (2016).

    PubMed  PubMed Central  Google Scholar 

  50. Villeda, S. A. et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 477, 90–94 (2011). The first demonstration of the effects of circulatory blood factors on brain ageing and cognitive function and the first systematic treatment of ageing with plasma injections.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Baruch, K. et al. CNS-specific immunity at the choroid plexus shifts toward destructive Th2 inflammation in brain aging. Proc. Natl Acad. of Sci. USA 110, 2264–2269 (2013).

    ADS  CAS  Google Scholar 

  52. Vasudevan, A. R. Eotaxin and obesity. J. Clin. Endocrinol. Metab. 91, 256–261 (2006).

    CAS  PubMed  Google Scholar 

  53. Choi, K. M. et al. Effect of exercise training on plasma visfatin and eotaxin levels. Eur. J. Endocrinol. 157, 437–442 (2007).

    CAS  PubMed  Google Scholar 

  54. Smith, L. K. et al. β2-microglobulin is a systemic pro-aging factor that impairs cognitive function and neurogenesis. Nature Med. 21, 932–937 (2015).

    CAS  PubMed  Google Scholar 

  55. Shatz, C. J. MHC class I: an unexpected role in neuronal plasticity. Neuron 64, 40–45 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Franceschi, C. & Campisi, J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A Biol. 69, S4–S9 (2014).

    Google Scholar 

  57. Coppé, J.-P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, 2853–68 (2008).

    PubMed  Google Scholar 

  58. Salminen, A. et al. Astrocytes in the aging brain express characteristics of senescence-associated secretory phenotype. Eur. J. Neurosci. 34, 3–11 (2011).

    PubMed  Google Scholar 

  59. Grabert, K. et al. Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nature Neurosci. 19, 504–516 (2016).

    CAS  PubMed  Google Scholar 

  60. Mosher, K. I. & Wyss-Coray, T. Microglial dysfunction in brain aging and Alzheimer's disease. Biochem. Pharmacol. 88, 594–604 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Lalli, M. A. et al. Whole-genome sequencing suggests a chemokine gene cluster that modifies age at onset in familial Alzheimer's disease. Mol. Psychiatry 20, 1294–1300 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Heneka, M. T. et al. Neuroinflammation in Alzheimer's disease. Lancet Neurol. 14, 388–405 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Lucin, K. M. & Wyss-Coray, T. Immune activation in brain aging and neurodegeneration: too much or too little? Neuron 64, 110–122 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. McGeer, P. L., McGeer, E., Rogers, J. & Sibley, J. Anti-inflammatory drugs and Alzheimer disease. Lancet 335, 1037 (1990).

    CAS  PubMed  Google Scholar 

  65. Côté, S. et al. Nonsteroidal anti-inflammatory drug use and the risk of cognitive impairment and Alzheimer's disease. Alzheimers Dement. 8, 219–226 (2012).

    PubMed  Google Scholar 

  66. Vlad, S. C., Miller, D. R., Kowall, N. W. & Felson, D. T. Protective effects of NSAIDs on the development of Alzheimer disease. Neurology 70, 1672–1677 (2008).

    CAS  PubMed  Google Scholar 

  67. Manthripragada, A. D. et al. Non-steroidal anti-inflammatory drug use and the risk of Parkinson's disease. Neuroepidemiology 36, 155–161 (2011).

    PubMed  PubMed Central  Google Scholar 

  68. Holmes, C., Cunningham, C., Zotova, E., Culliford, D. & Perry, V. H. Proinflammatory cytokines, sickness behavior, and Alzheimer disease. Neurology 77, 212–218 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Holmes, C. et al. Systemic inflammation and disease progression in Alzheimer disease. Neurology 73, 768–774 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang, B. et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer's disease. Cell 153, 707–720 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Linnartz, B. & Neumann, H. Microglial activatory (immunoreceptor tyrosine-based activation motif)- and inhibitory (immunoreceptor tyrosine-based inhibition motif)-signaling receptors for recognition of the neuronal glycocalyx. Glia 61, 37–46 (2013).

    PubMed  Google Scholar 

  72. Jonsson, T. et al. Variant of TREM2 associated with the risk of Alzheimer's disease. N. Engl. J. Med. 368, 107–116 (2013).

    CAS  PubMed  Google Scholar 

  73. Guerreiro, R. et al. TREM2 variants in Alzheimer's disease. N. Engl. J. Med. 368, 117–127 (2013).

    CAS  PubMed  Google Scholar 

  74. Naj, A. C. et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nature Genet. 43, 436–441 (2011).

    ADS  CAS  PubMed  Google Scholar 

  75. Hollingworth, P. et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nature Genet. 43, 429–435 (2011).

    CAS  PubMed  Google Scholar 

  76. Lambert, J. C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nature Genet. 45, 1452–1458 (2013).

    CAS  PubMed  Google Scholar 

  77. Spencer, B. & Masliah, E. Immunotherapy for Alzheimer's disease: past, present and future. Front. Aging Neurosci. 6, 114 (2014).

    PubMed  PubMed Central  Google Scholar 

  78. Conboy, I. M. et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433, 760–764 (2005). This landmark study provides the first molecular evidence that heterochronic parabiosis can rejuvenate and reverse stem cell ageing in numerous tissues.

    ADS  CAS  PubMed  Google Scholar 

  79. Ruckh, J. M. et al. Rejuvenation of regeneration in the aging central nervous system. Cell Stem Cell 10, 96–103 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Villeda, S. A. et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nature Med. 20, 659–663 (2014). The first report to show that systemic administration of plasma from young mice can reverse cognitive deficits in aged mice.

    CAS  PubMed  Google Scholar 

  81. Katsimpardi, L. et al. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 344, 630–634 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. Salpeter, S. J. et al. Systemic regulation of the age-related decline of pancreatic β-cell replication. Diabetes 62, 2843–2848 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Loffredo, F. S. et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell 153, 828–839 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Baht, G. S. et al. Exposure to a youthful circulation rejuvenates bone repair through modulation of β-catenin. Nature Commun. 6, 7131 (2015); erratum 6, 7761 (2015).

    ADS  CAS  Google Scholar 

  85. Sinha, M. et al. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science 344, 649–652 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  86. Conboy, M. J., Conboy, I. M. & Rando, T. A. Heterochronic parabiosis: historical perspective and methodological considerations for studies of aging and longevity. Aging Cell 12, 525–530 (2013).

    CAS  PubMed  Google Scholar 

  87. Castellano, J. M., Kirby, E. D. & Wyss-Coray, T. Blood-borne revitalization of the aged brain. JAMA Neurol. 72, 1191–1194 (2015).

    PubMed  PubMed Central  Google Scholar 

  88. Kim, M. J., Miller, C. M., Shadrach, J. L., Wagers, A. J. & Serwold, T. Young, proliferative thymic epithelial cells engraft and function in aging thymuses. J. Immunol. 194, 4784–4795 (2015).

    CAS  PubMed  Google Scholar 

  89. Middeldorp, J. et al. Preclinical assessment of young blood plasma for Alzheimer disease. JAMA Neurol. http://dx.doi.org/10.1001/jamaneurol.2016.3185 (2016).

  90. Sonntag, W. E., Ramsey, M. & Carter, C. S. Growth hormone and insulin-like growth factor-1 (IGF-1) and their influence on cognitive aging. Ageing Res. Rev. 4, 195–212 (2005).

    CAS  PubMed  Google Scholar 

  91. Trejo, J. L., Carro, E. & Torres-Aleman, I. Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J. Neurosci. 21, 1628–1634 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Stern, S. A., Kohtz, A. S., Pollonini, G. & Alberini, C. M. Enhancement of memories by systemic administration of insulin-like growth factor II. Neuropsychopharmacol. 39, 2179–2190 (2014).

    CAS  Google Scholar 

  93. Friedlander, A. L. et al. One year of insulin-like growth factor I treatment does not affect bone density, body composition, or psychological measures in postmenopausal women. J. Clin. Endocrinol. Metab. 86, 1496–1503 (2001).

    PubMed  CAS  Google Scholar 

  94. Baker, L. D. et al. Effects of growth hormone-releasing hormone on cognitive function in adults with mild cognitive impairment and healthy older adults. Arch. Neurol. 69, 1420–1429 (2012).

    PubMed  PubMed Central  Google Scholar 

  95. Zhang, G. et al. Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH. Nature 497, 211–216 (2013). Provides genetic evidence that the hypothalamus controls age-related inflammatory changes in the periphery.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  96. Walker, R. G. et al. Biochemistry and biology of GDF11 and myostatin: similarities, differences, and questions for future investigation. Circ. Res. 118, 1125–1141 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  97. Schafer, M. J. et al. Quantification of GDF11 and myostatin in human aging and cardiovascular disease. Cell Metab. 23, 1207–1215 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I would like to thank T. Montine at Stanford University for his critical reading of the manuscript. This work was supported by the US Department of Veterans Affairs and the US National Institute on Aging (AG045034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Wyss-Coray.

Ethics declarations

Competing interests

T.W.-C. is scientific adviser to and founder of Alkahest Inc., a company developing blood-based treatments to increase health span.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Reviewer Information Nature thanks F. Gage, M. Mattson and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wyss-Coray, T. Ageing, neurodegeneration and brain rejuvenation. Nature 539, 180–186 (2016). https://doi.org/10.1038/nature20411

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature20411

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing