Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The Shigella flexneri effector OspI deamidates UBC13 to dampen the inflammatory response

Abstract

Many bacterial pathogens can enter various host cells and then survive intracellularly, transiently evade humoral immunity, and further disseminate to other cells and tissues. When bacteria enter host cells and replicate intracellularly, the host cells sense the invading bacteria as damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs) by way of various pattern recognition receptors. As a result, the host cells induce alarm signals that activate the innate immune system1. Therefore, bacteria must modulate host inflammatory signalling and dampen these alarm signals2,3,4. How pathogens do this after invading epithelial cells remains unclear, however. Here we show that OspI, a Shigella flexneri effector encoded by ORF169b on the large plasmid and delivered by the type ΙΙΙ secretion system, dampens acute inflammatory responses during bacterial invasion by suppressing the tumour-necrosis factor (TNF)-receptor-associated factor 6 (TRAF6)-mediated signalling pathway. OspI is a glutamine deamidase that selectively deamidates the glutamine residue at position 100 in UBC13 to a glutamic acid residue. Consequently, the E2 ubiquitin-conjugating activity required for TRAF6 activation is inhibited, allowing S. flexneri OspI to modulate the diacylglycerol–CBM (CARD–BCL10–MALT1) complex–TRAF6–nuclear-factor-κB signalling pathway. We determined the 2.0 Å crystal structure of OspI, which contains a putative cysteine–histidine–aspartic acid catalytic triad. A mutational analysis showed this catalytic triad to be essential for the deamidation of UBC13. Our results suggest that S. flexneri inhibits acute inflammatory responses in the initial stage of infection by targeting the UBC13–TRAF6 complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: OspI inhibits DAG-mediated NF-κB activation during S. flexneri infection.
Figure 2: Crystal structure of S. flexneri OspI.
Figure 3: Involvement of the CHD triad in inhibiting TRAF6-dependent NF-κB activation.
Figure 4: OspI selectively deamidates Q100 in UBC13.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010)

    Article  CAS  PubMed  Google Scholar 

  2. Kim, M. et al. Bacterial interactions with the host epithelium. Cell Host Microbe 8, 20–35 (2010)

    Article  CAS  PubMed  Google Scholar 

  3. Ashida, H., Ogawa, M., Kim, M., Mimuro, H. & Sasakawa, C. Bacteria and host interactions in the gut epithelial barrier. Nature Chem. Biol. 8, 36–45 (2011)

    Article  Google Scholar 

  4. Taxman, D. J., Huang, M. T. & Ting, J. P. Inflammasome inhibition as a pathogenic stealth mechanism. Cell Host Microbe 8, 7–11 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hilbi, H. Bacterial jailbreak sounds cellular alarm: phagosome membrane remnants trigger signaling. Cell Host Microbe 6, 102–104 (2009)

    Article  CAS  PubMed  Google Scholar 

  6. Dupont, N. et al. Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy. Cell Host Microbe 6, 137–149 (2009)

    Article  CAS  PubMed  Google Scholar 

  7. Ashida, H. et al. Cell death and infection: a double-edged sword for host and pathogen survival. J. Cell Biol. 195, 931–942 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mattoo, S., Lee, Y. M. & Dixon, J. E. Interactions of bacterial effector proteins with host proteins. Curr. Opin. Immunol. 19, 392–401 (2007)

    Article  CAS  PubMed  Google Scholar 

  9. Rahman, M. M. & McFadden, G. Modulation of NF-κB signalling by microbial pathogens. Nature Rev. Microbiol. 9, 291–306 (2011)

    Article  CAS  Google Scholar 

  10. Girardin, S. E. et al. CARD4/Nod1 mediates NFκB and JNK activation by invasive Shigella flexneri. EMBO Rep. 2, 736–742 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Holden, N. S. et al. Phorbol ester-stimulated NF-κB-dependent transcription: roles for isoforms of novel protein kinase C. Cell. Signal. 20, 1338–1348 (2008)

    Article  CAS  PubMed  Google Scholar 

  12. Shahnazari, S. et al. A diacylglycerol-dependent signaling pathway contributes to regulation of antibacterial autophagy. Cell Host Microbe 8, 137–146 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Oancea, E., Teruel, M. N., Quest, A. F. & Meyer, T. Green fluorescent protein (GFP)-tagged cysteine-rich domains from protein kinase C as fluorescent indicators for diacylglycerol signaling in living cells. J. Cell Biol. 140, 485–498 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rawlings, D. J., Sommer, K. & Moreno-Garcia, M. E. The CARMA1 signalosome links the signalling machinery of adaptive and innate immunity in lymphocytes. Nature Rev. Immunol. 6, 799–812 (2006)

    Article  CAS  Google Scholar 

  15. Shao, F., Merritt, P. M., Bao, Z., Innes, R. W. & Dixon, J. E. A Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis. Cell 109, 575–588 (2002)

    Article  CAS  PubMed  Google Scholar 

  16. Zhu, M., Shao, F., Innes, R. W., Dixon, J. E. & Xu, Z. The crystal structure of Pseudomonas avirulence protein AvrPphB: a papain-like fold with a distinct substrate-binding site. Proc. Natl Acad. Sci. USA 101, 302–307 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Crow, A. et al. Crystal structures of Cif from bacterial pathogens Photorhabdus luminescens and Burkholderia pseudomallei. PLoS ONE 4, e5582 (2009)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  18. Sinclair, J. C., Sandy, J., Delgoda, R., Sim, E. & Noble, M. E. Structure of arylamine N-acetyltransferase reveals a catalytic triad. Nature Struct. Biol. 7, 560–564 (2000)

    Article  CAS  PubMed  Google Scholar 

  19. Kitadokoro, K. et al. Crystal structures reveal a thiol protease-like catalytic triad in the C-terminal region of Pasteurella multocida toxin. Proc. Natl Acad. Sci. USA 104, 5139–5144 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Orth, J. H. et al. Pasteurella multocida toxin activation of heterotrimeric G proteins by deamidation. Proc. Natl Acad. Sci. USA 106, 7179–7184 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, Y. et al. MMDB: annotating protein sequences with Entrez’s 3D-structure database. Nucleic Acids Res. 35, D298–D300 (2007)

    Article  CAS  PubMed  Google Scholar 

  22. Buetow, L., Flatau, G., Chiu, K., Boquet, P. & Ghosh, P. Structure of the Rho-activating domain of Escherichia coli cytotoxic necrotizing factor 1. Nature Struct. Biol. 8, 584–588 (2001)

    Article  CAS  PubMed  Google Scholar 

  23. Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346–351 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Deng, L. et al. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351–361 (2000)

    Article  CAS  PubMed  Google Scholar 

  25. Lamothe, B. et al. Site-specific Lys-63-linked tumor necrosis factor receptor-associated factor 6 auto-ubiquitination is a critical determinant of IκB kinase activation. J. Biol. Chem. 282, 4102–4112 (2007)

    Article  CAS  PubMed  Google Scholar 

  26. Fukushima, T. et al. Ubiquitin-conjugating enzyme Ubc13 is a critical component of TNF receptor-associated factor (TRAF)-mediated inflammatory responses. Proc. Natl Acad. Sci. USA 104, 6371–6376 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yin, Q. et al. E2 interaction and dimerization in the crystal structure of TRAF6. Nature Struct. Mol. Biol. 16, 658–666 (2009)

    Article  CAS  Google Scholar 

  28. Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ashida, H. et al. A bacterial E3 ubiquitin ligase IpaH9.8 targets NEMO/IKKγ to dampen the host NF-κB-mediated inflammatory response. Nature Cell Biol. 12, 66–73 (2010)

    Article  CAS  PubMed  Google Scholar 

  30. Sasakawa, C. et al. Molecular alteration of the 140-megadalton plasmid associated with loss of virulence and Congo red binding activity in Shigella flexneri. Infect. Immun. 51, 470–475 (1986)

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sasakawa, C., Makino, S., Kamata, K. & Yoshikawa, M. Isolation, characterization, and mapping of Tn5 insertions into the 140-megadalton invasion plasmid defective in the mouse Sereny test in Shigella flexneri 2a. Infect. Immun. 54, 32–36 (1986)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Takaesu, G. et al. TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol. Cell 5, 649–658 (2000)

    Article  CAS  PubMed  Google Scholar 

  33. Ishida, T. et al. Identification of TRAF6, a novel tumor necrosis factor receptor-associated factor protein that mediates signaling from an amino-terminal domain of the CD40 cytoplasmic region. J. Biol. Chem. 271, 28745–28748 (1996)

    Article  CAS  PubMed  Google Scholar 

  34. Kim, M. et al. Bacteria hijack integrin-linked kinase to stabilize focal adhesions and block cell detachment. Nature 459, 578–582 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Otwinowski, Z. M. W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  PubMed  Google Scholar 

  36. Collaborative Computational Project, 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

    Article  Google Scholar 

  37. Schneider, T. R. & Sheldrick, G. M. Substructure solution with SHELXD. Acta Crystallogr. D 58, 1772–1779 (2002)

    Article  PubMed  Google Scholar 

  38. Morris, R. J., Perrakis, A. & Lamzin, V. S. ARP/wARP and automatic interpretation of protein electron density maps. Methods Enzymol. 374, 229–244 (2003)

    Article  CAS  PubMed  Google Scholar 

  39. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  PubMed  Google Scholar 

  40. Brunger, A. T. Version 1.2 of the Crystallography and NMR system. Nature Protocols 2, 2728–2733 (2007)

    Article  CAS  PubMed  Google Scholar 

  41. McNicholas, S., Potterton, E., Wilson, K. S. & Noble, M. E. Presenting your structures: the CCP4mg molecular-graphics software. Acta Crystallogr. D 67, 386–394 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. DeLano, W. L. Unraveling hot spots in binding interfaces: progress and challenges. Curr. Opin. Struct. Biol. 12, 14–20 (2002)

    Article  CAS  PubMed  Google Scholar 

  43. Kobayashi, N. et al. Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis. EMBO J. 20, 1271–1280 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Morikawa, H. et al. The bacterial effector Cif interferes with SCF ubiquitin ligase function by inhibiting deneddylation of Cullin1. Biochem. Biophys. Res. Commun. 401, 268–274 (2010)

    Article  CAS  PubMed  Google Scholar 

  45. Parsot, C., Menard, R., Gounon, P. & Sansonetti, P. J. Enhanced secretion through the Shigella flexneri Mxi-Spa translocon leads to assembly of extracellular proteins into macromolecular structures. Mol. Microbiol. 16, 291–300 (1995)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Fukuda for matrix-assisted laser desorption/ionization–time of flight (MALDI–TOF) analysis. We thank the members of the Sasakawa laboratory for their advice. We are grateful to R. Whittier for critical reading of the manuscript. Diffraction data were collected at the Osaka University beamline BL44XU at SPring-8. This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas (23121525 (T.M.)), a Grant-in-Aid for Specially Promoted Research (23000012 (C.S.)), a Grant-in Aid for Young Scientists (A) (23689027 (M.K.)), several Grants-in-Aid for Young Scientists (B) (23790471 (M.O.), 23790472 (H.A.) and 22790403 (T.S.)), a Grant-in-Aid for Scientific Research (B) (23390102 (H.M.)), a Grant-in-Aid for Challenging Exploratory Research (23659220 (H.M.)), a Grant-in-Aid for Scientific Research on Priority Areas (18073003 (C.S.)) and the Japan Initiative for Global Research Network on Infectious Diseases (C.S.). Part of this work was supported by grants from the Naito Foundation (M.K. and H.M.), the Waksman Foundation of Japan (M.O.), the Yakult Bio-Science Foundation (M.O.), the Yakult Central Institute (C.S.) and The Hayashi Memorial Foundation for Female Natural Scientists (M.K.).

Author information

Authors and Affiliations

Authors

Contributions

T.S. and T.M. designed and performed the experiments. M.K., H.M., M.S., H.A., A.O., T. Kobayashi and M.O. assisted with the experiments. J.G., Y.S. and J.I.I. gave advice regarding the design of the experiments and provided TRAF6 materials. T. Koyama and S.N. made antibodies. A.O. made the ΔospI mutant. C.S. and T.M. wrote the paper.

Corresponding authors

Correspondence to Tsunehiro Mizushima or Chihiro Sasakawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Atomic coordinates and structure factors for the OspI structure have been deposited in the PDB under ID 3B21.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-15 and Supplementary Table 1. (PDF 16996 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanada, T., Kim, M., Mimuro, H. et al. The Shigella flexneri effector OspI deamidates UBC13 to dampen the inflammatory response. Nature 483, 623–626 (2012). https://doi.org/10.1038/nature10894

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10894

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing