Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of RCC1 chromatin factor bound to the nucleosome core particle

Abstract

The small GTPase Ran enzyme regulates critical eukaryotic cellular functions including nuclear transport and mitosis through the creation of a RanGTP gradient around the chromosomes. This concentration gradient is created by the chromatin-bound RCC1 (regulator of chromosome condensation) protein, which recruits Ran to nucleosomes and activates Ran’s nucleotide exchange activity. Although RCC1 has been shown to bind directly with the nucleosome, the molecular details of this interaction were not known. Here we determine the crystal structure of a complex of Drosophila RCC1 and the nucleosome core particle at 2.9 Å resolution, providing an atomic view of how a chromatin protein interacts with the histone and DNA components of the nucleosome. Our structure also suggests that the Widom 601 DNA positioning sequence present in the nucleosomes forms a 145-base-pair nucleosome core particle, not the expected canonical 147-base-pair particle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of RCC1–nucleosome core particle complex.
Figure 2: Interactions of RCC1, LANA peptide and H4 peptide with the nucleosome histone dimer acidic patch.
Figure 3: Interactions between RCC1 and nucleosomal DNA.
Figure 4: The Widom 601 sequence forms a 145-bp nucleosome core particle.
Figure 5: Model for the Ran–RCC1–nucleosome core particle complex assuming no conformational changes.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Atomic coordinates and structure factors for the reported crystal structure have been deposited with the Protein Data Bank under accession code 3MVD.

References

  1. Carazo-Salas, R. E. et al. Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation. Nature 400, 178–181 (1999)

    CAS  Google Scholar 

  2. Clarke, P. R. & Zhang, C. Spatial and temporal coordination of mitosis by Ran GTPase. Nature Rev. Mol. Cell Biol. 9, 464–477 (2008)

    CAS  Google Scholar 

  3. Kalab, P. & Heald, R. The RanGTP gradient—a GPS for the mitotic spindle. J. Cell Sci. 121, 1577–1586 (2008)

    CAS  Google Scholar 

  4. Renault, L. et al. The 1.7 Å crystal structure of the regulator of chromosome condensation (RCC1) reveals a seven-bladed propeller. Nature 392, 97–101 (1998)

    CAS  Google Scholar 

  5. Nemergut, M. E., Mizzen, C. A., Stukenberg, T., Allis, C. D. & Macara, I. G. Chromatin docking and exchange activity enhancement of RCC1 by histones H2A and H2B. Science 292, 1540–1543 (2001)

    CAS  Google Scholar 

  6. Chen, T. et al. N-terminal α-methylation of RCC1 is necessary for stable chromatin association and normal mitosis. Nature Cell Biol. 9, 596–603 (2007)

    CAS  Google Scholar 

  7. Hao, Y. & Macara, I. G. Regulation of chromatin binding by a conformational switch in the tail of the Ran exchange factor RCC1. J. Cell Biol. 182, 827–836 (2008)

    CAS  Google Scholar 

  8. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997)

    CAS  Google Scholar 

  9. Bao, Y., White, C. L. & Luger, K. Nucleosome core particles containing a poly(dA.dT) sequence element exhibit a locally distorted DNA structure. J. Mol. Biol. 361, 617–624 (2006)

    CAS  Google Scholar 

  10. Chakravarthy, S. & Luger, K. The histone variant macro-H2A preferentially forms ‘hybrid nucleosomes’. J. Biol. Chem. 281, 25522–25531 (2006)

    CAS  Google Scholar 

  11. Clapier, C. R. et al. Structure of the Drosophila nucleosome core particle highlights evolutionary constraints on the H2A–H2B histone dimer. Proteins 71, 1–7 (2008)

    CAS  Google Scholar 

  12. Davey, C. A., Sargent, D. F., Luger, K., Maeder, A. W. & Richmond, T. J. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution. J. Mol. Biol. 319, 1097–1113 (2002)

    CAS  Google Scholar 

  13. Ong, M. S., Richmond, T. J. & Davey, C. A. DNA stretching and extreme kinking in the nucleosome core. J. Mol. Biol. 368, 1067–1074 (2007)

    CAS  Google Scholar 

  14. Richmond, T. J. & Davey, C. A. The structure of DNA in the nucleosome core. Nature 423, 145–150 (2003)

    CAS  Google Scholar 

  15. Suto, R. K., Clarkson, M. J., Tremethick, D. J. & Luger, K. Crystal structure of a nucleosome core particle containing the variant histone H2A.Z. Nature Struct. Biol. 7, 1121–1124 (2000)

    CAS  Google Scholar 

  16. Tsunaka, Y., Kajimura, N., Tate, S. & Morikawa, K. Alteration of the nucleosomal DNA path in the crystal structure of a human nucleosome core particle. Nucleic Acids Res. 33, 3424–3434 (2005)

    CAS  Google Scholar 

  17. White, C. L., Suto, R. K. & Luger, K. Structure of the yeast nucleosome core particle reveals fundamental changes in internucleosome interactions. EMBO J. 20, 5207–5218 (2001)

    CAS  Google Scholar 

  18. Barbera, A. J. et al. The nucleosomal surface as a docking station for Kaposi’s sarcoma herpesvirus LANA. Science 311, 856–861 (2006)

    CAS  Google Scholar 

  19. Suto, R. K. et al. Crystal structures of nucleosome core particles in complex with minor groove DNA-binding ligands. J. Mol. Biol. 326, 371–380 (2003)

    CAS  Google Scholar 

  20. Lowary, P. T. & Widom, J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol. 276, 19–42 (1998)

    CAS  Google Scholar 

  21. Davis, T. L., Bonacci, T. M., Sprang, S. R. & Smrcka, A. V. Structural and molecular characterization of a preferred protein interaction surface on G protein βγ subunits. Biochemistry 44, 10593–10604 (2005)

    CAS  Google Scholar 

  22. Lodowski, D. T., Pitcher, J. A., Capel, W. D., Lefkowitz, R. J. & Tesmer, J. J. Keeping G proteins at bay: a complex between G protein-coupled receptor kinase 2 and Gβγ. Science 300, 1256–1262 (2003)

    CAS  Google Scholar 

  23. Orlicky, S., Tang, X., Willems, A., Tyers, M. & Sicheri, F. Structural basis for phosphodependent substrate selection and orientation by the SCFCdc4 ubiquitin ligase. Cell 112, 243–256 (2003)

    CAS  Google Scholar 

  24. Renault, L., Kuhlmann, J., Henkel, A. & Wittinghofer, A. Structural basis for guanine nucleotide exchange on Ran by the regulator of chromosome condensation (RCC1). Cell 105, 245–255 (2001)

    CAS  Google Scholar 

  25. England, J. R., Huang, J., Jennings, M. J., Makde, R. D. & Tan, S. RCC1 uses a conformationally diverse loop region to interact with the nucleosome: a model for the RCC1–nucleosome complex. J. Mol. Biol. 398, 518–529 (2010)

    CAS  Google Scholar 

  26. Dorigo, B. et al. Nucleosome arrays reveal the two-start organization of the chromatin fiber. Science 306, 1571–1573 (2004)

    CAS  Google Scholar 

  27. Shogren-Knaak, M. et al. Histone H4–K16 acetylation controls chromatin structure and protein interactions. Science 311, 844–847 (2006)

    CAS  Google Scholar 

  28. Koerber, R. T., Rhee, H. S., Jiang, C. & Pugh, B. F. Interaction of transcriptional regulators with specific nucleosomes across the Saccharomyces genome. Mol. Cell 35, 889–902 (2009)

    CAS  Google Scholar 

  29. Edayathumangalam, R. S., Weyermann, P., Dervan, P. B., Gottesfeld, J. M. & Luger, K. Nucleosomes in solution exist as a mixture of twist-defect states. J. Mol. Biol. 345, 103–114 (2005)

    CAS  Google Scholar 

  30. Gangaraju, V. K., Prasad, P., Srour, A., Kagalwala, M. N. & Bartholomew, B. Conformational changes associated with template commitment in ATP-dependent chromatin remodeling by ISW2. Mol. Cell 35, 58–69 (2009)

    CAS  Google Scholar 

  31. Saha, A., Wittmeyer, J. & Cairns, B. R. Chromatin remodeling through directional DNA translocation from an internal nucleosomal site. Nature Struct. Mol. Biol. 12, 747–755 (2005)

    CAS  Google Scholar 

  32. Bilbao-Cortes, D., Hetzer, M., Langst, G., Becker, P. B. & Mattaj, I. W. Ran binds to chromatin by two distinct mechanisms. Curr. Biol. 12, 1151–1156 (2002)

    CAS  Google Scholar 

  33. Zhang, C., Goldberg, M. W., Moore, W. J., Allen, T. D. & Clarke, P. R. Concentration of Ran on chromatin induces decondensation, nuclear envelope formation and nuclear pore complex assembly. Eur. J. Cell Biol. 81, 623–633 (2002)

    CAS  Google Scholar 

  34. Partridge, J. R. & Schwartz, T. U. Crystallographic and biochemical analysis of the Ran-binding zinc finger domain. J. Mol. Biol. 391, 375–389 (2009)

    CAS  Google Scholar 

  35. Chook, Y. M. & Blobel, G. Structure of the nuclear transport complex karyopherin-β2–Ran·GppNHp. Nature 399, 230–237 (1999)

    CAS  Google Scholar 

  36. Seewald, M. J., Korner, C., Wittinghofer, A. & Vetter, I. R. RanGAP mediates GTP hydrolysis without an arginine finger. Nature 415, 662–666 (2002)

    CAS  Google Scholar 

  37. Vetter, I. R., Nowak, C., Nishimoto, T., Kuhlmann, J. & Wittinghofer, A. Structure of a Ran-binding domain complexed with Ran bound to a GTP analogue: implications for nuclear transport. Nature 398, 39–46 (1999)

    CAS  Google Scholar 

  38. Otwinoski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Google Scholar 

  39. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Cryst. 40, 658–674 (2007)

    CAS  Google Scholar 

  40. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997)

    CAS  Google Scholar 

  41. Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002)

    Google Scholar 

  42. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004)

    Google Scholar 

  43. Delano, W. L. The PyMOL molecular graphics system 〈http://www.pymol.org〉.

  44. Baker, N. A., Sept, D., Joseph, S., Holst, M. J. & McCammon, J. A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl Acad. Sci. USA 98, 10037–10041 (2001)

    CAS  Google Scholar 

  45. Luger, K., Rechsteiner, T. J. & Richmond, T. J. Expression and purification of recombinant histones and nucleosome reconstitution. Methods Mol. Biol. 119, 1–16 (1999)

    CAS  Google Scholar 

  46. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK—a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283–291 (1993)

    CAS  Google Scholar 

  47. Brunger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998)

    CAS  Google Scholar 

  48. Lavery, R., Moakher, M., Maddocks, J. H., Petkeviciute, D. & Zakrzewska, K. Conformational analysis of nucleic acids revisited: Curves+. Nucleic Acids Res. 37, 5917–5929 (2009)

    CAS  Google Scholar 

  49. Kleywegt, G. J. Use of non-crystallographic symmetry in protein structure refinement. Acta Crystallogr. D Biol. Crystallogr. 52, 842–857 (1996)

    CAS  Google Scholar 

  50. Tan, S., Kern, R. C. & Selleck, W. The pST44 polycistronic expression system for producing protein complexes in Escherichia coli . Protein Expr. Purif. 40, 385–395 (2005)

    CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Saxena for sharing unpublished coordinates of Drosophila RCC1; K. Wiley, D. Schlaich and M. Porzio for technical assistance; the staff of APS NE-CAT beamline 24-ID-E and Cornell CHESS beamlines A1 and F1 for their assistance during synchrotron data collection; N. Yennawar at the Penn Sate Huck Institutes X-ray core facility; W. Selleck, M. Adams, the members of the Tan laboratory and the Penn State Center for Eukaryotic Gene Regulation for discussions; T. Stukenberg for advice and encouragement at the initiation of this project, J. Widom for sending the 601 nucleosome DNA positioning sequence; and the Pew Scholar 20th Reunion Meeting for stimulating this project.

Author information

Authors and Affiliations

Authors

Contributions

R.D.M. cloned and purified macromolecules, crystallized, collected, processed X-ray data, refined and analysed the structure. J.R.E. performed pulldown assays and collected X-ray data. H.P.Y. collected and processed X-ray data. S.T. designed the study, cloned and purified macromolecules, crystallized, collected X-ray data, analysed the results and wrote the paper. All authors commented on the manuscript.

Corresponding author

Correspondence to Song Tan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-5 with legends, Supplementary Table 1 and Supplementary Results. (PDF 948 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makde, R., England, J., Yennawar, H. et al. Structure of RCC1 chromatin factor bound to the nucleosome core particle. Nature 467, 562–566 (2010). https://doi.org/10.1038/nature09321

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09321

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing