Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

G domain dimerization controls dynamin's assembly-stimulated GTPase activity

Abstract

Dynamin is an atypical GTPase that catalyses membrane fission during clathrin-mediated endocytosis. The mechanisms of dynamin’s basal and assembly-stimulated GTP hydrolysis are unknown, though both are indirectly influenced by the GTPase effector domain (GED). Here we present the 2.0 Å resolution crystal structure of a human dynamin 1-derived minimal GTPase–GED fusion protein, which was dimeric in the presence of the transition state mimic GDP.AlF4-.The structure reveals dynamin’s catalytic machinery and explains how assembly-stimulated GTP hydrolysis is achieved through G domain dimerization. A sodium ion present in the active site suggests that dynamin uses a cation to compensate for the developing negative charge in the transition state in the absence of an arginine finger. Structural comparison to the rat dynamin G domain reveals key conformational changes that promote G domain dimerization and stimulated hydrolysis. The structure of the GTPase–GED fusion protein dimer provides insight into the mechanisms underlying dynamin-catalysed membrane fission.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of GG dimer.
Figure 2: Catalytic machinery involved in dynamin GTP hydrolysis.
Figure 3: Active site conformational changes induced by dynamin G-domain dimerization and GTP hydrolysis.
Figure 4: Functional analyses of dynamin active site mutants.
Figure 5: Structure and conformational changes of the BSE.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

The atomic coordinates of the GG long-axis and short-axis dimers are deposited in the Protein Data Bank with accession numbers 2X2E and 2X2F, respectively.

References

  1. Mettlen, M., Pucadyil, T. J., Ramachandran, R. & Schmid, S. L. Dissecting dynamin’s role in clathrin-mediated endocytosis. Biochem. Soc. Trans. 37, 1022–1026 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Praefcke, G. J. & McMahon, H. T. The dynamin superfamily: universal membrane tubulation and fission molecules? Nature Rev. Mol. Cell Biol. 5, 133–147 (2004)

    Article  CAS  Google Scholar 

  3. Muhlberg, A. B., Warnock, D. E. & Schmid, S. L. Domain structure and intramolecular regulation of dynamin GTPase. EMBO J. 16, 6676–6683 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stowell, M. H., Marks, B., Wigge, P. & McMahon, H. T. Nucleotide-dependent conformational changes in dynamin: evidence for a mechanochemical molecular spring. Nature Cell Biol. 1, 27–32 (1999)

    Article  CAS  PubMed  Google Scholar 

  5. Damke, H., Baba, T., Warnock, D. E. & Schmid, S. L. Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J. Cell Biol. 127, 915–934 (1994)

    Article  CAS  PubMed  Google Scholar 

  6. Damke, H., Binns, D. D., Ueda, H., Schmid, S. L. & Baba, T. Dynamin GTPase domain mutants block endocytic vesicle formation at morphologically distinct stages. Mol. Biol. Cell 12, 2578–2589 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Song, B. D., Leonard, M. & Schmid, S. L. Dynamin GTPase domain mutants that differentially affect GTP binding, GTP hydrolysis, and clathrin-mediated endocytosis. J. Biol. Chem. 279, 40431–40436 (2004)

    Article  CAS  PubMed  Google Scholar 

  8. Pucadyil, T. J. & Schmid, S. L. Real-time visualization of dynamin-catalyzed membrane fission and vesicle release. Cell 135, 1263–1275 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Danino, D., Moon, K. H. & Hinshaw, J. E. Rapid constriction of lipid bilayers by the mechanochemical enzyme dynamin. J. Struct. Biol. 147, 259–267 (2004)

    Article  CAS  PubMed  Google Scholar 

  10. Ramachandran, R. & Schmid, S. L. Real-time detection reveals that effectors couple dynamin's GTP-dependent conformational changes to the membrane. EMBO J. 27, 27–37 (2008)

    Article  CAS  PubMed  Google Scholar 

  11. Bashkirov, P. V. et al. GTPase cycle of dynamin is coupled to membrane squeeze and release, leading to spontaneous fission. Cell 135, 1276–1286 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang, P. & Hinshaw, J. E. Three-dimensional reconstruction of dynamin in the constricted state. Nature Cell Biol. 3, 922–926 (2001)

    Article  CAS  PubMed  Google Scholar 

  13. Chen, Y. J., Zhang, P., Egelman, E. H. & Hinshaw, J. E. The stalk region of dynamin drives the constriction of dynamin tubes. Nature Struct. Mol. Biol. 11, 574–575 (2004)

    Article  CAS  Google Scholar 

  14. Song, B. D., Yarar, D. & Schmid, S. L. An assembly-incompetent mutant establishes a requirement for dynamin self-assembly in clathrin-mediated endocytosis in vivo . Mol. Biol. Cell 15, 2243–2252 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sever, S. et al. Physical and functional connection between auxilin and dynamin during endocytosis. EMBO J. 25, 4163–4174 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ramachandran, R. et al. The dynamin middle domain is critical for tetramerization and higher-order self-assembly. EMBO J. 26, 559–566 (2007)

    Article  CAS  PubMed  Google Scholar 

  17. Sever, S., Muhlberg, A. B. & Schmid, S. L. Impairment of dynamin's GAP domain stimulates receptor-mediated endocytosis. Nature 398, 481–486 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Narayanan, R., Leonard, M., Song, B. D., Schmid, S. L. & Ramaswami, M. An internal GAP domain negatively regulates presynaptic dynamin in vivo: a two-step model for dynamin function. J. Cell Biol. 169, 117–126 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chappie, J. S. et al. An intramolecular signaling element that modulates dynamin function in vitro and in vivo . Mol. Biol. Cell 20, 3561–3571 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Smirnova, E., Shurland, D. L., Newman-Smith, E. D., Pishvaee, B. & van der Bliek, A. M. A model for dynamin self-assembly based on binding between three different protein domains. J. Biol. Chem. 274, 14942–14947 (1999)

    Article  CAS  PubMed  Google Scholar 

  21. Reubold, T. F. et al. Crystal structure of the GTPase domain of rat dynamin 1. Proc. Natl Acad. Sci. USA 102, 13093–13098 (2005)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Niemann, H. H., Knetsch, M. L. W., Scherer, A., Manstein, D. J. & Kull, F. J. Crystal structure of a dynamin GTPase domain in both nucleotide-free and GDP-bound forms. EMBO J. 20, 5813–5821 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bourne, H. R., Sanders, D. A. & McCormick, F. The GTPase superfamily: conserved structure and molecular mechanism. Nature 349, 117–127 (1991)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Li, G. & Zhang, X. C. GTP hydrolysis mechanism of Ras-like GTPases. J. Mol. Biol. 340, 921–932 (2004)

    Article  CAS  PubMed  Google Scholar 

  25. Scheffzek, K., Ahmadian, M. R. & Wittinghofer, A. GTPase-activating proteins: helping hands to complement an active site. Trends Biochem. Sci. 23, 257–262 (1998)

    Article  CAS  PubMed  Google Scholar 

  26. Tesmer, J. J. G., Berman, D. M., Gilman, A. G. & Sprang, S. R. Structure of RGS4 bound to AlF4 --activated Giα1: stabilization of the transition state for GTP hydrolysis. Cell 89, 251–261 (1997)

    Article  CAS  PubMed  Google Scholar 

  27. Gasper, R., Meyer, S., Gotthardt, K., Sirajuddin, M. & Wittinghofer, A. It takes two to tango: regulation of G proteins by dimerization. Nature Rev. Mol. Cell Biol. 10, 423–429 (2009)

    Article  CAS  Google Scholar 

  28. Scrima, A. & Wittinghofer, A. Dimerisation-dependent GTPase reaction of MnmE: how potassium acts as GTPase-activating element. EMBO J. 25, 2940–2951 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ghosh, A., Praefcke, G. J., Renault, L., Wittinghofer, A. & Herrmann, C. How guanylate-binding proteins achieve assembly-stimulated processive cleavage of GTP to GMP. Nature 440, 101–104 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Marks, B. et al. GTPase activity of dynamin and resulting conformation change are essential for endocytosis. Nature 410, 231–235 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Loerke, D. et al. Cargo and dynamin regulate clathrin-coated pit maturation. PLoS Biol. 7, e57 (2009)

    Article  PubMed  CAS  Google Scholar 

  32. Ferguson, S. et al. Coordinated actions of actin and BAR proteins upstream of dynamin at endocytic clathrin-coated pits. Dev. Cell 17, 811–822 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Low, H. H., Sachse, C., Amos, L. A. & Lowe, J. Structure of a bacterial dynamin-like protein lipid tube provides a mechanism for assembly and membrane curving. Cell 139, 1342–1352 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  34. Solomaha, E. & Palfrey, H. C. Conformational changes in dynamin on GTP binding and oligomerization reported by intrinsic and extrinsic fluorescence. Biochem. J. 391, 601–611 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mears, J. A., Ray, P. & Hinshaw, J. E. A corkscrew model for dynamin constriction. Structure 15, 1190–1202 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Carr, J. F. & Hinshaw, J. E. Dynamin assembles into spirals under physiological salt conditions upon the addition of GDP and gamma-phosphate analogues. J. Biol. Chem. 272, 28030–28035 (1997)

    Article  CAS  PubMed  Google Scholar 

  37. Hinshaw, J. E. & Schmid, S. L. Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature 374, 190–192 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Sweitzer, S. M. & Hinshaw, J. E. Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 93, 1021–1029 (1998)

    Article  CAS  PubMed  Google Scholar 

  39. Roux, A., Uyhazi, K., Frost, A. & De Camilli, P. GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature 441, 528–531 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Leonard, M., Song, B. D., Ramachandran, R. & Schimd, S. L. Robust colorimetric assays for dynamin's basal and stimulated GTPase activities. Methods Enzymol. 404, 490–503 (2005)

    Article  CAS  PubMed  Google Scholar 

  41. Van Duyne, G. D., Standaert, R. F., Karplus, P. A., Schreiber, S. L. & Clardy, J. Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. J. Mol. Biol. 229, 105–124 (1993)

    Article  CAS  PubMed  Google Scholar 

  42. Diederichs, K., McSweeney, S. & Ravelli, R. B. G. Zero-dose extrapolation as part of macromolecular synchrotron data reduction. Acta Crystallogr. D 59, 903–909 (2003)

    Article  PubMed  CAS  Google Scholar 

  43. Kabsch, W. in International Tables for Crystallography Vol. F, Crystallography of Biological Macromolecules (eds Rossmann, M. G. & Arnold, E.) Ch. 11.3 (Kluwer Academic, 2001)

    Google Scholar 

  44. Terwillinger, T. C. MAD phasing: treatment of dispersive differences as isomorphous replacement information. Acta Crystallogr. D 50, 17–23 (1994)

    Article  Google Scholar 

  45. Bruker-AXS data preparation and reciprocal space exploration, 6.12, Unix version. (Bruker, 2001)

  46. Sheldrick, G. M. in Direct Methods for Solving Macromolecular Structures (ed. Fortier, S.) 401–411 (Kluwer Academic, 1998)

    Book  Google Scholar 

  47. de La Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol. 276, 472–494 (1997)

    Article  CAS  PubMed  Google Scholar 

  48. CCP4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

  49. Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  PubMed  Google Scholar 

  50. Brünger, A. T. et al. Crystallography & NMR System: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  PubMed  Google Scholar 

  51. Navaza, J. Implementation of molecular replacement in AMoRe. Acta Crystallogr. D 57, 1367–1372 (2001)

    Article  CAS  PubMed  Google Scholar 

  52. Connolly, M. L. The molecular-surface package. J. Mol. Graph. 11, 139–143 (1993)

    Article  CAS  PubMed  Google Scholar 

  53. Yap, K. Interhlx. 〈http://nmr.uhnres.utoronto.ca/ikura/resources/data+sw/interhlx/〉 (1998)

  54. DeLano, W. L. The PyMol Molecular Graphics System. (Pymol, 2002); 〈http://www.pymol.org〉.

  55. Leonard, M., Song, B. D., Ramachandran, R. & Schmid, S. L. Robust colorimetric assays for dynamin's basal and stimulated GTPase activities. Methods Enzymol. 404, 490–503 (2005)

    Article  CAS  PubMed  Google Scholar 

  56. Schlunck, G. et al. Modulation of Rac localization and function by dynamin. Mol. Biol. Cell 15, 256–267 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank V. Lukiyanchuk for assistance in cloning and purification; A. Hickman, J. Mindell and R. Ramachandran for discussions and technical advice; T. Pucadyil and R. Ramachandran for critical reading of the manuscript; J. Hinshaw and J. Mears for providing the unpublished coordinates for the GTPase docking model derived from their cryo-EM docking studies; and R. Stevens and I. Wilson for structural advice, guidance and the use of their laboratory facilities in the early stages of this work. This work was supported by NIH grants GM42455 and MH61345 (to S.L.S.) and the Intramural Program of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) of the NIH. J.S.C. was supported by a Ruth Kirschstein individual predoctoral fellowship from the NIMH (MH081419) and by a postdoctoral Intramural Research Training Award from NIDDK. Data were collected at the SER-CAT 22-ID beamline at the Advanced Photon Source, Argonne National Laboratory. Use of the APS was supported by the US Department of Energy, Basic Energy Sciences, Office of Science, under contract no. W-31-109-Eng-38.

Author information

Authors and Affiliations

Authors

Contributions

J.S.C. designed, purified, and characterized all GG proteins and crystallized the GG dimer; J.S.C. and F.D. collected X-ray diffraction data and solved the structures; S.A. and M.L. purified full-length dynamin constructs and carried out biochemical assays; J.S.C., S.L.S. and F.D. designed experiments and interpreted data; and J.S.C, S.L.S. and F.D. prepared the manuscript.

Corresponding authors

Correspondence to Sandra L. Schmid or Fred Dyda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-2 and Supplementary Figures 1-6 with legends. (PDF 616 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chappie, J., Acharya, S., Leonard, M. et al. G domain dimerization controls dynamin's assembly-stimulated GTPase activity. Nature 465, 435–440 (2010). https://doi.org/10.1038/nature09032

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09032

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing