Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transmission of electrical signals by spin-wave interconversion in a magnetic insulator

Abstract

The energy bandgap of an insulator is large enough to prevent electron excitation and electrical conduction1. But in addition to charge, an electron also has spin2, and the collective motion of spin can propagate—and so transfer a signal—in some insulators3. This motion is called a spin wave and is usually excited using magnetic fields. Here we show that a spin wave in an insulator can be generated and detected using spin-Hall effects, which enable the direct conversion of an electric signal into a spin wave, and its subsequent transmission through (and recovery from) an insulator over macroscopic distances. First, we show evidence for the transfer of spin angular momentum between an insulator magnet Y3Fe5O12 and a platinum film. This transfer allows direct conversion of an electric current in the platinum film to a spin wave in the Y3Fe5O12 via spin-Hall effects4,5,6,7,8,9,10,11. Second, making use of the transfer in a Pt/Y3Fe5O12/Pt system, we demonstrate that an electric current in one metal film induces voltage in the other, far distant, metal film. Specifically, the applied electric current is converted into spin angular momentum owing to the spin-Hall effect7,8,10,11 in the first platinum film; the angular momentum is then carried by a spin wave in the insulating Y3Fe5O12 layer; at the distant platinum film, the spin angular momentum of the spin wave is converted back to an electric voltage. This effect can be switched on and off using a magnetic field. Weak spin damping3 in Y3Fe5O12 is responsible for its transparency for the transmission of spin angular momentum. This hybrid electrical transmission method potentially offers a means of innovative signal delivery in electrical circuits and devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two types of non-equilibrium spin currents in solids.
Figure 2: Spin pumping in Pt/Y3Fe5O12.
Figure 3: Magnetization oscillation induced by spin-transfer torque in Pt/Y3Fe5O12.
Figure 4: Electric-signal transmission via spin-wave spin currents.

Similar content being viewed by others

References

  1. Ashcroft, N. W. & Mermin, N. D. Solid State Physics Ch. 9 (Saunders College, 1976)

    MATH  Google Scholar 

  2. Maekawa, S. ed. Concepts in Spin Electronics Ch. 7 and 8 (Oxford Univ. Press, 2006)

    Book  Google Scholar 

  3. Schneider, T. et al. Realization of spin-wave logic gates. Appl. Phys. Lett. 92, 022505 (2008)

    Article  ADS  Google Scholar 

  4. Dyakonov, M. I. & Perel, V. I. Current-induced spin orientation of electrons in semiconductors. Phys. Lett. A 35, 459–460 (1971)

    Article  ADS  Google Scholar 

  5. Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999)

    Article  ADS  CAS  Google Scholar 

  6. Takahashi, S. & Maekawa, S. Hall effect induced by a spin-polarized current in superconductors. Phys. Rev. Lett. 88, 116601 (2002)

    Article  ADS  CAS  Google Scholar 

  7. Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004)

    Article  ADS  CAS  Google Scholar 

  8. Wunderlich, J., Kaestner, B., Sinova, J. & Jungwirth, T. Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system. Phys. Rev. Lett. 94, 047204 (2005)

    Article  ADS  CAS  Google Scholar 

  9. Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006)

    Article  ADS  Google Scholar 

  10. Valenzuela, S. O. & Tinkham, M. Direct electronic measurement of the spin Hall effect. Nature 442, 176–179 (2006)

    Article  ADS  CAS  Google Scholar 

  11. Kimura, T., Otani, Y., Sato, T., Takahashi, S. & Maekawa, S. Room-temperature reversible spin Hall effect. Phys. Rev. Lett. 98, 156601 (2007)

    Article  ADS  CAS  Google Scholar 

  12. Valet, T. & Fert, A. Theory of the perpendicular magnetoresistance in magnetic multilayers. Phys. Rev. B 48, 7099–7113 (1993)

    Article  ADS  CAS  Google Scholar 

  13. Takahashi, S. & Maekawa, S. Spin current in metals and superconductors. J. Phys. Soc. Jpn 77, 031009 (2008)

    Article  ADS  Google Scholar 

  14. Kittel, C. Introduction to Solid State Physics 8th edn, Ch. 12 and 13 (Wiley, 2005)

    MATH  Google Scholar 

  15. Demokritov, S. O., Hillebrands, B. & Slavin, A. N. Brillouin light scattering studies of confined spin waves: linear and nonlinear confinement. Phys. Rep. 348, 441–489 (2001)

    Article  ADS  CAS  Google Scholar 

  16. Bass, J. & Pratt, W. P. Spin-diffusion lengths in metals and alloys, and spin-flipping at metal/metal interfaces: an experimentalist’s critical review. J. Phys. Condens. Matter 19, 183201 (2007)

    Article  ADS  Google Scholar 

  17. Silsbee, R. H., Janossy, A. & Monod, P. Coupling between ferromagnetic and conduction-spin-resonance modes at a ferromagnetic-normal-metal interface. Phys. Rev. B 19, 4382–4399 (1979)

    Article  ADS  CAS  Google Scholar 

  18. Tserkovnyak, Y., Brataas, A. & Bauer, G. E. W. Enhanced Gilbert damping in thin ferromagnetic films. Phys. Rev. Lett. 88, 117601 (2002)

    Article  ADS  Google Scholar 

  19. Mizukami, S., Ando, Y. & Miyazaki, T. Effect of spin diffusion on Gilbert damping for a very thin permalloy layer in Cu/permalloy/Cu/Pt films. Phys. Rev. B 66, 104413 (2002)

    Article  ADS  Google Scholar 

  20. Kiselev, S. I. et al. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380–383 (2003)

    Article  ADS  CAS  Google Scholar 

  21. Ji, Y., Chien, C. L. & Stiles, M. D. Current-induced spin-wave excitations in a single ferromagnetic layer. Phys. Rev. Lett. 90, 106601 (2003)

    Article  ADS  CAS  Google Scholar 

  22. Ando, K. et al. Electric manipulation of spin relaxation using the spin Hall effect. Phys. Rev. Lett. 101, 036601 (2008)

    Article  ADS  CAS  Google Scholar 

  23. Brataas, A., Bauer, G. E. W. & Kelly, P. J. Non-collinear magnetoelectronics. Phys. Rep. 427, 157–255 (2006)

    Article  ADS  CAS  Google Scholar 

  24. Chikazumi, S. Physics of Ferromagnetism Ch. 20 and 21 (Oxford Univ. Press, 1997)

    Google Scholar 

  25. Stiles, M. D., Xiao, J. & Zangwill, A. Phenomenological theory of current-induced magnetization precession. Phys. Rev. B 69, 054408 (2004)

    Article  ADS  Google Scholar 

  26. Wigen, P. E., Doetsch, H., Ming, Y., Baselgia, L. & Waldner, F. Chaos in magnetic garnet thin films. J. Appl. Phys. 63, 4157–4159 (1988)

    Article  ADS  CAS  Google Scholar 

  27. Rippard, W. H., Pufall, M. R., Kaka, S., Russek, S. E. & Silva, T. J. Direct-current induced dynamics in Co90Fe10/Ni80Fe20 point contacts. Phys. Rev. Lett. 92, 027201 (2004)

    Article  ADS  CAS  Google Scholar 

  28. Krivorotov, I. N. et al. Large-amplitude coherent spin waves excited by spin-polarized current in nanoscale spin valves. Phys. Rev. B 76, 024418 (2007)

    Article  ADS  Google Scholar 

  29. Laulicht, I., Suss, J. T. & Barak, J. The temperature dependence of the ferromagnetic and paramagnetic resonance spectra in thin yttrium-iron-garnet films. J. Appl. Phys. 70, 2251–2258 (1991)

    Article  ADS  CAS  Google Scholar 

  30. Brown, W. F. Thermal fluctuations of a single-domain particle. Phys. Rev. 130, 1677–1686 (1963)

    Article  ADS  Google Scholar 

  31. Donahue, M. J. & Porter, D. G. OOMMF v1.2a3 Object Oriented MicroMagnetic Framework Software (NIST, 2004)

Download references

Acknowledgements

We thank K. Sato, Y. Suzuki, Y. Tserkovnyak, G. Tatara, T. Ishibashi and K. M. Itoh for discussions. This work was supported by a Grant-in-Aid for Scientific Research in Priority Area ‘Creation and control of spin current’ (19048028) from MEXT, Japan, a Grant-in-Aid for Scientific Research (A) from MEXT, Japan, the global COE for the ‘Materials integration international centre of education and research’ and ‘High-level global cooperation for leading-edge platform on access spaces (C12)’ from MEXT, Japan, a Grant for Industrial Technology Research from NEDO, Japan, and Fundamental Research Grant from TRF, Japan.

Author Contributions Y.K., K.H., K.U. and K.A. performed the measurements and analysed the data; J.O. carried out the numerical analysis; S.T., S.M. and E.S. provided the theoretical analysis; H.U. and H.K. contributed to the sample fabrication; Y.K., K.H, K.U., M.M. and K.T. contributed to the experimental set-up; Y.K., S.T., J.O., K.U., M.M., H.U., K.T., S.M. and E.S. wrote the manuscript; all authors discussed the results and commented on the manuscript; and E.S. planned and supervised the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Saitoh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Information Sections A-F, Supplementary Figures S1-S3 with Legends, and Additional References. (PDF 499 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kajiwara, Y., Harii, K., Takahashi, S. et al. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010). https://doi.org/10.1038/nature08876

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08876

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing