Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of an avian influenza polymerase PAN reveals an endonuclease active site

Abstract

The heterotrimeric influenza virus polymerase, containing the PA, PB1 and PB2 proteins, catalyses viral RNA replication and transcription in the nucleus of infected cells. PB1 holds the polymerase active site1 and reportedly harbours endonuclease activity2, whereas PB2 is responsible for cap binding2,3,4. The PA amino terminus is understood to be the major functional part of the PA protein and has been implicated in several roles, including endonuclease5 and protease activities6 as well as viral RNA/complementary RNA promoter binding7. Here we report the 2.2 ångström (Å) crystal structure of the N-terminal 197 residues of PA, termed PAN, from an avian influenza H5N1 virus. The PAN structure has an α/β architecture and reveals a bound magnesium ion coordinated by a motif similar to the (P)DXN(D/E)XK motif characteristic of many endonucleases. Structural comparisons and mutagenesis analysis of the motif identified in PAN provide further evidence that PAN holds an endonuclease active site. Furthermore, functional analysis with in vivo ribonucleoprotein reconstitution and direct in vitro endonuclease assays strongly suggest that PAN holds the endonuclease active site and has critical roles in endonuclease activity of the influenza virus polymerase, rather than PB1. The high conservation of this endonuclease active site among influenza strains indicates that PAN is an important target for the design of new anti-influenza therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The PA N structure.
Figure 2: Structural comparisons suggest PA N holds an endonuclease active site.
Figure 3: Effects of mutations in the PA and PB1 subunits on RNA polymerase function.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Atomic coordinates and structure factors for the reported crystal structure have been deposited with the Protein Data Bank under the accession number 3EBJ.

References

  1. Poch, O., Sauvaget, I., Delarue, M. & Tordo, N. Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J. 8, 3867–3874 (1989)

    Article  CAS  Google Scholar 

  2. Li, M. L., Rao, P. & Krug, R. M. The active sites of the influenza cap-dependent endonuclease are on different polymerase subunits. EMBO J. 20, 2078–2086 (2001)

    Article  CAS  Google Scholar 

  3. Guilligay, D. et al. The structural basis for cap binding by influenza virus polymerase subunit PB2. Nature Struct. Mol. Biol. 15, 500–506 (2008)

    Article  CAS  Google Scholar 

  4. Fechter, P. et al. Two aromatic residues in the PB2 subunit of influenza A RNA polymerase are crucial for cap binding. J. Biol. Chem. 278, 20381–20388 (2003)

    Article  CAS  Google Scholar 

  5. Hara, K., Schmidt, F. I., Crow, M. & Brownlee, G. G. Amino acid residues in the N-terminal region of the PA subunit of influenza A virus RNA polymerase play a critical role in protein stability, endonuclease activity, cap binding, and virion RNA promoter binding. J. Virol. 80, 7789–7798 (2006)

    Article  CAS  Google Scholar 

  6. Sanz-Ezquerro, J. J., Zurcher, T., de la Luna, S., Ortin, J. & Nieto, A. The amino-terminal one-third of the influenza virus PA protein is responsible for the induction of proteolysis. J. Virol. 70, 1905–1911 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Maier, H. J., Kashiwagi, T., Hara, K. & Brownlee, G. G. Differential role of the influenza A virus polymerase PA subunit for vRNA and cRNA promoter binding. Virology 370, 194–204 (2008)

    Article  CAS  Google Scholar 

  8. Lee, M. T. et al. Definition of the minimal viral components required for the initiation of unprimed RNA synthesis by influenza virus RNA polymerase. Nucleic Acids Res. 30, 429–438 (2002)

    Article  ADS  CAS  Google Scholar 

  9. Regan, J. F., Liang, Y. & Parslow, T. G. Defective assembly of influenza A virus due to a mutation in the polymerase subunit PA. J. Virol. 80, 252–261 (2006)

    Article  CAS  Google Scholar 

  10. Naffakh, N., Massin, P. & van der Werf, S. The transcription/replication activity of the polymerase of influenza A viruses is not correlated with the level of proteolysis induced by the PA subunit. Virology 285, 244–252 (2001)

    Article  CAS  Google Scholar 

  11. Fodor, E. et al. A single amino acid mutation in the PA subunit of the influenza virus RNA polymerase inhibits endonucleolytic cleavage of capped RNAs. J. Virol. 76, 8989–9001 (2002)

    Article  CAS  Google Scholar 

  12. Hara, K. et al. Influenza virus RNA polymerase PA subunit is a novel serine protease with Ser624 at the active site. Genes Cells 6, 87–97 (2001)

    Article  CAS  Google Scholar 

  13. Zurcher, T., de la Luna, S., Sanz-Ezquerro, J. J., Nieto, A. & Ortin, J. Mutational analysis of the influenza virus A/Victoria/3/75 PA protein: studies of interaction with PB1 protein and identification of a dominant negative mutant. J. Gen. Virol. 77, 1745–1749 (1996)

    Article  CAS  Google Scholar 

  14. Huarte, M. et al. Threonine 157 of influenza virus PA polymerase subunit modulates RNA replication in infectious viruses. J. Virol. 77, 6007–6013 (2003)

    Article  CAS  Google Scholar 

  15. Kawaguchi, A., Naito, T. & Nagata, K. Involvement of influenza virus PA subunit in assembly of functional RNA polymerase complexes. J. Virol. 79, 732–744 (2005)

    Article  CAS  Google Scholar 

  16. Guu, T. S., Dong, L., Wittung-Stafshede, P. & Tao, Y. J. Mapping the domain structure of the influenza A virus polymerase acidic protein (PA) and its interaction with the basic protein 1 (PB1) subunit. Virology 379, 135–142 (2008)

    Article  CAS  Google Scholar 

  17. He, X. et al. Crystal structure of the polymerase PA(C)-PB1(N) complex from an avian influenza H5N1 virus. Nature 454, 1123–1126 (2008)

    Article  ADS  CAS  Google Scholar 

  18. Obayashi, E. et al. The structural basis for an essential subunit interaction in influenza virus RNA polymerase. Nature 454, 1127–1131 (2008)

    Article  ADS  CAS  Google Scholar 

  19. Blok, V. et al. Inhibition of the influenza virus RNA-dependent RNA polymerase by antisera directed against the carboxy-terminal region of the PB2 subunit. J. Gen. Virol. 77, 1025–1033 (1996)

    Article  CAS  Google Scholar 

  20. Honda, A., Mizumoto, K. & Ishihama, A. Minimum molecular architectures for transcription and replication of the influenza virus. Proc. Natl Acad. Sci. USA 99, 13166–13171 (2002)

    Article  ADS  CAS  Google Scholar 

  21. Shi, L., Summers, D. F., Peng, Q. & Galarz, J. M. Influenza A virus RNA polymerase subunit PB2 is the endonuclease which cleaves host cell mRNA and functions only as the trimeric enzyme. Virology 208, 38–47 (1995)

    Article  CAS  Google Scholar 

  22. Newman, M., Strzelecka, T., Dorner, L. F., Schildkraut, I. & Aggarwal, A. K. Structure of restriction endonuclease BamHI and its relationship to EcoRI. Nature 368, 660–664 (1994)

    Article  ADS  CAS  Google Scholar 

  23. Lukacs, C. M., Kucera, R., Schildkraut, I. & Aggarwal, A. K. Understanding the immutability of restriction enzymes: crystal structure of BglII and its DNA substrate at 1.5 A resolution. Nature Struct. Biol. 7, 134–140 (2000)

    Article  CAS  Google Scholar 

  24. Fodor, E. & Smith, M. The PA subunit is required for efficient nuclear accumulation of the PB1 subunit of the influenza A virus RNA polymerase complex. J. Virol. 78, 9144–9153 (2004)

    Article  CAS  Google Scholar 

  25. Nieto, A. et al. Nuclear transport of influenza virus polymerase PA protein. Virus Res. 24, 65–75 (1992)

    Article  CAS  Google Scholar 

  26. Nieto, A., de la Luna, S., Barcena, J., Portela, A. & Ortin, J. Complex structure of the nuclear translocation signal of influenza virus polymerase PA subunit. J. Gen. Virol. 75, 29–36 (1994)

    Article  CAS  Google Scholar 

  27. Perales, B. et al. The replication activity of influenza virus polymerase is linked to the capacity of the PA subunit to induce proteolysis. J. Virol. 74, 1307–1312 (2000)

    Article  CAS  Google Scholar 

  28. Toyoda, T., Adyshev, D. M., Kobayashi, M., Iwata, A. & Ishihama, A. Molecular assembly of the influenza virus RNA polymerase: determination of the subunit-subunit contact sites. J. Gen. Virol. 77, 2149–2157 (1996)

    Article  CAS  Google Scholar 

  29. Vreede, F. T., Jung, T. E. & Brownlee, G. G. Model suggesting that replication of influenza virus is regulated by stabilization of replicative intermediates. J. Virol. 78, 9568–9572 (2004)

    Article  CAS  Google Scholar 

  30. Brownlee, G. G., Fodor, E., Pritlove, D. C., Gould, K. G. & Dalluge, J. J. Solid phase synthesis of 5′-diphosphorylated oligoribonucleotides and their conversion to capped m7Gppp-oligoribonucleotides for use as primers for influenza A virus RNA polymerase in vitro . Nucleic Acids Res. 23, 2641–2647 (1995)

    Article  CAS  Google Scholar 

  31. Otwinowski, Z. & Minor, W. in Macromolecular Crystallography Vol. 276 (eds Carter, C. W. Jr & Sweet, R. M.) Part A 307–326 (Academic, 1997)

    Book  Google Scholar 

  32. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008)

    Article  ADS  CAS  Google Scholar 

  33. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

  34. Read, R. J. Pushing the boundaries of molecular replacement with maximum likelihood. Acta Crystallogr. D 57, 1373–1382 (2001)

    Article  CAS  Google Scholar 

  35. Brunger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Chen and K. Yu for providing the A/goose/Guangdong/1/96 influenza PA gene, R. Zhang and A. Joachimiak for assistance with data collection, and G. G. Brownlee for providing materials and for valuable advice. This work was supported by the National Natural Science Foundation of China (grant numbers 30599432, 30221003 and 30721003), the Ministry of Science and Technology International Cooperation Project (2006DFB32420), the Ministry of Science and Technology 863 Project (2006AA02A314 and 2006AA02A322), the Ministry of Science and Technology 973 Project (2006CB504300 and 2007CB914300) and the Medical Research Council (G0700848).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zihe Rao or Yingfang Liu.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-S4 with Legends and Supplementary Table T1. (PDF 449 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, P., Bartlam, M., Lou, Z. et al. Crystal structure of an avian influenza polymerase PAN reveals an endonuclease active site. Nature 458, 909–913 (2009). https://doi.org/10.1038/nature07720

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07720

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing