Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Functional genomic screen reveals genes involved in lipid-droplet formation and utilization

Abstract

Eukaryotic cells store neutral lipids in cytoplasmic lipid droplets1,2 enclosed in a monolayer of phospholipids and associated proteins3,4. These dynamic organelles5 serve as the principal reservoirs for storing cellular energy and for the building blocks for membrane lipids. Excessive lipid accumulation in cells is a central feature of obesity, diabetes and atherosclerosis, yet remarkably little is known about lipid-droplet cell biology. Here we show, by means of a genome-wide RNA interference (RNAi) screen in Drosophila S2 cells that about 1.5% of all genes function in lipid-droplet formation and regulation. The phenotypes of the gene knockdowns sorted into five distinct phenotypic classes. Genes encoding enzymes of phospholipid biosynthesis proved to be determinants of lipid-droplet size and number, suggesting that the phospholipid composition of the monolayer profoundly affects droplet morphology and lipid utilization. A subset of the Arf1–COPI vesicular transport proteins also regulated droplet morphology and lipid utilization, thereby identifying a previously unrecognized function for this machinery. These phenotypes are conserved in mammalian cells, suggesting that insights from these studies are likely to be central to our understanding of human diseases involving excessive lipid storage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Oleate increases the formation of lipid droplets in Drosophila S2 cells.
Figure 2: Genome-wide screen identified genes regulating the formation of lipid droplets.
Figure 3: Phosphatidylcholine content regulates the size and abundance of lipid droplets.
Figure 4: ArfI–COPI complex members function in the formation of lipid droplets.

Similar content being viewed by others

References

  1. Bartz, R. et al. Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic. J. Lipid Res. 48, 837–847 (2007)

    Article  CAS  Google Scholar 

  2. Brown, D. A. Lipid droplets: proteins floating on a pool of fat. Curr. Biol. 11, R446–R449 (2001)

    Article  CAS  Google Scholar 

  3. Miura, S. et al. Functional conservation for lipid storage droplet association among Perilipin, ADRP, and TIP47 (PAT)-related proteins in mammals, Drosophila, and Dictyostelium. J. Biol. Chem. 277, 32253–32257 (2002)

    Article  CAS  Google Scholar 

  4. Bartz, R. et al. Dynamic activity of lipid droplets: protein phosphorylation and GTP-mediated protein translocation. J. Proteome Res. 6, 3256–3265 (2007)

    Article  CAS  Google Scholar 

  5. Martin, S. & Parton, R. G. Lipid droplets: a unified view of a dynamic organelle. Nature Rev. Mol. Cell Biol. 7, 373–378 (2006)

    Article  CAS  Google Scholar 

  6. Ulvila, J. et al. Double-stranded RNA is internalized by scavenger receptor-mediated endocytosis in Drosophila S2 cells. J. Biol. Chem. 281, 14370–14375 (2006)

    Article  CAS  Google Scholar 

  7. Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature Biotechnol. 22, 1567–1572 (2004)

    Article  CAS  Google Scholar 

  8. Ma, Y., Creanga, A., Lum, L. & Beachy, P. A. Prevalence of off-target effects in Drosophila RNA interference screens. Nature 443, 359–363 (2006)

    Article  CAS  ADS  Google Scholar 

  9. Kulkarni, M. M. et al. Evidence of off-target effects associated with long dsRNAs in Drosophila melanogaster cell-based assays. Nature Methods 3, 833–838 (2006)

    Article  CAS  Google Scholar 

  10. Goshima, G. et al. Genes required for mitotic spindle assembly in Drosophila S2 cells. Science 316, 417–421 (2007)

    Article  CAS  ADS  Google Scholar 

  11. Brown, M. S. & Goldstein, J. L. A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc. Natl Acad. Sci. USA 96, 11041–11048 (1999)

    Article  CAS  ADS  Google Scholar 

  12. Dobrosotskaya, I. Y., Seegmiller, A. C., Brown, M. S., Goldstein, J. L. & Rawson, R. B. Regulation of SREBP processing and membrane lipid production by phospholipids in Drosophila. Science 296, 879–883 (2002)

    Article  CAS  ADS  Google Scholar 

  13. Kent, C. Regulatory enzymes of phosphatidylcholine biosynthesis: a personal perspective. Biochim. Biophys. Acta 1733, 53–66 (2005)

    Article  CAS  Google Scholar 

  14. Morrison, D. K., Murakami, M. S. & Cleghon, V. Protein kinases and phosphatases in the Drosophila genome. J. Cell Biol. 150, 57–62 (2000)

    Article  Google Scholar 

  15. Cornell, R. B. & Northwood, I. C. Regulation of CTP:phosphocholine cytidylyltransferase by amphitropism and relocalization. Trends Biochem. Sci. 25, 441–447 (2000)

    Article  CAS  Google Scholar 

  16. Weber, U., Eroglu, C. & Mlodzik, M. Phospholipid membrane composition affects EGF receptor and Notch signaling through effects on endocytosis during Drosophila development. Dev. Cell 5, 559–570 (2003)

    Article  CAS  Google Scholar 

  17. Hafez, I. M. & Cullis, P. R. Roles of lipid polymorphism in intracellular delivery. Adv. Drug Deliv. Rev. 47, 139–148 (2001)

    Article  CAS  Google Scholar 

  18. Dascher, C. & Balch, W. E. Dominant inhibitory mutants of ARF1 block endoplasmic reticulum to Golgi transport and trigger disassembly of the Golgi apparatus. J. Biol. Chem. 269, 1437–1448 (1994)

    CAS  PubMed  Google Scholar 

  19. Nakamura, N., Banno, Y. & Tamiya-Koizumi, K. Arf1-dependent PLD1 is localized to oleic acid-induced lipid droplets in NIH3T3 cells. Biochem. Biophys. Res. Commun. 335, 117–123 (2005)

    Article  CAS  Google Scholar 

  20. Spang, A., Matsuoka, K., Hamamoto, S., Schekman, R. & Orci, L. Coatomer, Arf1p, and nucleotide are required to bud coat protein complex I-coated vesicles from large synthetic liposomes. Proc. Natl Acad. Sci. USA 95, 11199–11204 (1998)

    Article  CAS  ADS  Google Scholar 

  21. D'Souza-Schorey, C. & Chavrier, P. ARF proteins: roles in membrane traffic and beyond. Nature Rev. Mol. Cell Biol. 7, 347–358 (2006)

    Article  CAS  Google Scholar 

  22. Marcinkiewicz, A., Gauthier, D., Garcia, A. & Brasaemle, D. L. The phosphorylation of serine 492 of perilipin a directs lipid droplet fragmentation and dispersion. J. Biol. Chem. 281, 11901–11909 (2006)

    Article  CAS  Google Scholar 

  23. Verghese, P. B., Arrese, E. L. & Soulages, J. L. Stimulation of lipolysis enhances the rate of cholesterol efflux to HDL in adipocytes. Mol. Cell. Biochem. 302, 241–248 (2007)

    Article  CAS  Google Scholar 

  24. Bard, F. et al. Functional genomics reveals genes involved in protein secretion and Golgi organization. Nature 439, 604–607 (2006)

    Article  CAS  ADS  Google Scholar 

  25. Kumar, Y., Cocchiaro, J. & Valdivia, R. H. The obligate intracellular pathogen Chlamydia trachomatis targets host lipid droplets. Curr. Biol. 16, 1646–1651 (2006)

    Article  CAS  Google Scholar 

  26. Miyanari, Y. et al. The lipid droplet is an important organelle for hepatitis C virus production. Nature Cell Biol. 9, 1089–1097 (2007)

    Article  CAS  Google Scholar 

  27. Goshima, G. & Vale, R. D. The roles of microtubule-based motor proteins in mitosis: comprehensive RNAi analysis in the Drosophila S2 cell line. J. Cell Biol. 162, 1003–1016 (2003)

    Article  CAS  Google Scholar 

  28. Rogers, S. L., Wiedemann, U., Stuurman, N. & Vale, R. D. Molecular requirements for actin-based lamella formation in Drosophila S2 cells. J. Cell Biol. 162, 1079–1088 (2003)

    Article  CAS  Google Scholar 

  29. Hojjati, M. R. & Jiang, X. C. Rapid, specific, and sensitive measurements of plasma sphingomyelin and phosphatidylcholine. J. Lipid Res. 47, 673–676 (2006)

    Article  CAS  Google Scholar 

  30. Monetti, M. et al. Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver. Cell Metab. 6, 69–78 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Vasenkova and R. De Breuil for help with dsRNA synthesis; K. Warner for help with yeast work; M. Schuldiner, E. Griffis, T. Fazzio, E. Herker, S. Stymne, B. Panning and M. Ott for reagents; D. B. Jones and G. Howard for assistance with manuscript preparation; G. Schoenhofer for web access for the database; members of the Farese, Vale and Walter laboratories for discussions; and D. Srivastava and S. Yamanaka for critical reading of the manuscript. This work was supported by a Freedom to Discover Award from Bristol–Myers Squibb and National Institutes of Health grant R21 DK078254-01 (to R.F.), a David and Mary Phillips postdoctoral fellowship award (to Y.G.), the Human Frontier Science Program Organization (T.C.W.), the Howard Hughes Medical Institute (P.W. and R.D.V.) and the J. David Gladstone Institutes.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tobias C. Walther or Robert V. Farese.

Supplementary information

Supplementary information

The file contains Supplementary Methods, Supplementary Tables S1-S3 and Supplementary Figures S1-S5. (PDF 4198 kb)

Supplementary information

The file contains Supplementary Movie 1 (AVI 3709 kb)

Supplementary information

The file contains Supplementary Movie 2. (AVI 27099 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Y., Walther, T., Rao, M. et al. Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature 453, 657–661 (2008). https://doi.org/10.1038/nature06928

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06928

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing